Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2409.07609
Cited By
A Cost-Aware Approach to Adversarial Robustness in Neural Networks
11 September 2024
Charles Meyers
Mohammad Reza Saleh Sedghpour
Tommy Löfstedt
Erik Elmroth
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Cost-Aware Approach to Adversarial Robustness in Neural Networks"
29 / 29 papers shown
Title
An Empirical Study of Mamba-based Language Models
R. Waleffe
Wonmin Byeon
Duncan Riach
Brandon Norick
V. Korthikanti
...
Vartika Singh
Jared Casper
Jan Kautz
Mohammad Shoeybi
Bryan Catanzaro
101
73
0
12 Jun 2024
Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance
Shuhei Watanabe
44
129
0
21 Apr 2023
Compute and Energy Consumption Trends in Deep Learning Inference
Radosvet Desislavov
Fernando Martínez-Plumed
José Hernández-Orallo
49
114
0
12 Sep 2021
Benchmarking the Nvidia GPU Lineage: From Early K80 to Modern A100 with Asynchronous Memory Transfers
Martin Svedin
Steven W. D. Chien
Gibson Chikafa
Niclas Jansson
Artur Podobas
39
21
0
09 Jun 2021
A critical look at the current train/test split in machine learning
Jimin Tan
Jianan Yang
Sai Wu
Gang Chen
Jake Zhao
OOD
36
37
0
08 Jun 2021
Membership Leakage in Label-Only Exposures
Zheng Li
Yang Zhang
67
245
0
30 Jul 2020
Label-Only Membership Inference Attacks
Christopher A. Choquette-Choo
Florian Tramèr
Nicholas Carlini
Nicolas Papernot
MIACV
MIALM
87
505
0
28 Jul 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
74
49
0
16 Jun 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Hidden Trigger Backdoor Attacks
Aniruddha Saha
Akshayvarun Subramanya
Hamed Pirsiavash
81
622
0
30 Sep 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
611
5,769
0
25 Jul 2019
Benchmarking TPU, GPU, and CPU Platforms for Deep Learning
Y. Wang
Gu-Yeon Wei
David Brooks
ELM
VLM
57
274
0
24 Jul 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
80
389
0
30 May 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
61
666
0
03 Apr 2019
Knockoff Nets: Stealing Functionality of Black-Box Models
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
MLAU
86
534
0
06 Dec 2018
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
65
679
0
28 Sep 2018
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
75
458
0
03 Jul 2018
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
Md. Zahangir Alom
T. Taha
C. Yakopcic
Stefan Westberg
P. Sidike
Mst Shamima Nasrin
B. Van Essen
A. Awwal
V. Asari
VLM
71
881
0
03 Mar 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
70
1,094
0
27 Dec 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
147
2,147
0
21 Aug 2017
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Chen Sun
Abhinav Shrivastava
Saurabh Singh
Abhinav Gupta
VLM
176
2,393
0
10 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
279
12,029
0
19 Jun 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
72
1,260
0
04 Apr 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
239
8,548
0
16 Aug 2016
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
89
4,163
0
25 Apr 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
136
4,886
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
243
19,017
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.5K
100,213
0
04 Sep 2014
1