ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.05755
  4. Cited By
Re-evaluating the Advancements of Heterophilic Graph Learning

Re-evaluating the Advancements of Heterophilic Graph Learning

9 September 2024
Sitao Luan
Qincheng Lu
Chenqing Hua
Xueliang Wang
Jiaqi Zhu
Xiao-Wen Chang
ArXivPDFHTML

Papers citing "Re-evaluating the Advancements of Heterophilic Graph Learning"

3 / 3 papers shown
Title
What Is Missing In Homophily? Disentangling Graph Homophily For Graph
  Neural Networks
What Is Missing In Homophily? Disentangling Graph Homophily For Graph Neural Networks
Yilun Zheng
Sitao Luan
Lihui Chen
44
4
0
27 Jun 2024
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,080
0
13 Feb 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
260
1,811
0
25 Nov 2016
1