ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.05143
21
0

PhysHand: A Hand Simulation Model with Physiological Geometry, Physical Deformation, and Accurate Contact Handling

8 September 2024
Mingyang Sun
Dongliang Kou
Ruisheng Yuan
Dingkang Yang
Peng Zhai
Xiao Zhao
Yiheng Jiang
Xiong Li
Jingchen Li
Lihua Zhang
    3DH
ArXivPDFHTML
Abstract

In virtual Hand-Object Interaction (HOI) scenarios, the authenticity of the hand's deformation is important to immersive experience, such as natural manipulation or tactile feedback. Unrealistic deformation arises from simplified hand geometry, neglect of the different physics attributes of the hand, and penetration due to imprecise contact handling. To address these problems, we propose PhysHand, a novel hand simulation model, which enhances the realism of deformation in HOI. First, we construct a physiologically plausible geometry, a layered mesh with a "skin-flesh-skeleton" structure. Second, to satisfy the distinct physics features of different soft tissues, a constraint-based dynamics framework is adopted with carefully designed layer-corresponding constraints to maintain flesh attached and skin smooth. Finally, we employ an SDF-based method to eliminate the penetration caused by contacts and enhance its accuracy by introducing a novel multi-resolution querying strategy. Extensive experiments have been conducted to demonstrate the outstanding performance of PhysHand in calculating deformations and handling contacts. Compared to existing methods, our PhysHand: 1) can compute both physiologically and physically plausible deformation; 2) significantly reduces the depth and count of penetration in HOI.

View on arXiv
Comments on this paper