Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2409.02777
Cited By
v1
v2
v3 (latest)
Oh the Prices You'll See: Designing a Fair Exchange System to Mitigate Personalized Pricing
4 September 2024
Aditya Karan
Naina Balepur
Hari Sundaram
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Oh the Prices You'll See: Designing a Fair Exchange System to Mitigate Personalized Pricing"
20 / 20 papers shown
Title
Algorithmic Fairness in Performative Policy Learning: Escaping the Impossibility of Group Fairness
Seamus Somerstep
Yaácov Ritov
Yuekai Sun
FaML
79
4
0
30 May 2024
Learning and Collusion in Multi-unit Auctions
Simina Brânzei
Mahsa Derakhshan
Negin Golrezaei
Yanjun Han
43
3
0
27 May 2023
Equalised Odds is not Equal Individual Odds: Post-processing for Group and Individual Fairness
Edward A. Small
Kacper Sokol
Daniel Manning
Flora D. Salim
Jeffrey Chan
FaML
81
8
0
19 Apr 2023
Algorithmic Collective Action in Machine Learning
Moritz Hardt
Eric Mazumdar
Celestine Mendler-Dünner
Tijana Zrnic
36
22
0
08 Feb 2023
A Fair Pricing Model via Adversarial Learning
Vincent Grari
Arthur Charpentier
Marcin Detyniecki
53
14
0
24 Feb 2022
Regulatory Instruments for Fair Personalized Pricing
Renzhe Xu
Xingxuan Zhang
Pengbi Cui
Yangqiu Song
Zheyan Shen
Jiazheng Xu
59
15
0
09 Feb 2022
Improving Fairness via Federated Learning
Yuchen Zeng
Hongxu Chen
Kangwook Lee
FedML
73
64
0
29 Oct 2021
GIFAIR-FL: A Framework for Group and Individual Fairness in Federated Learning
Xubo Yue
Maher Nouiehed
Raed Al Kontar
FedML
71
37
0
05 Aug 2021
Fairness, Welfare, and Equity in Personalized Pricing
Nathan Kallus
Angela Zhou
54
40
0
21 Dec 2020
Fairness and Accuracy in Federated Learning
Wei Huang
Tianrui Li
Dexian Wang
Shengdong Du
Junbo Zhang
FedML
94
56
0
18 Dec 2020
Model-sharing Games: Analyzing Federated Learning Under Voluntary Participation
Kate Donahue
Jon M. Kleinberg
FedML
71
81
0
02 Oct 2020
Collaborative Fairness in Federated Learning
Lingjuan Lyu
Xinyi Xu
Qian Wang
FedML
68
193
0
27 Aug 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
61
341
0
14 Feb 2020
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
Alekh Agarwal
Miroslav Dudík
Zhiwei Steven Wu
FaML
59
248
0
30 May 2019
Fair Resource Allocation in Federated Learning
Tian Li
Maziar Sanjabi
Ahmad Beirami
Virginia Smith
FedML
190
804
0
25 May 2019
Fair Algorithms for Clustering
Suman Kalyan Bera
Deeparnab Chakrabarty
Nicolas J. Flores
Maryam Negahbani
FaML
FedML
73
241
0
08 Jan 2019
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
227
1,103
0
06 Mar 2018
Counterfactual Fairness
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo M. A. Silva
FaML
224
1,586
0
20 Mar 2017
Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
205
1,213
0
26 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,593
0
17 Feb 2016
1