ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.02115
  4. Cited By
Deep Neural Implicit Representation of Accessibility for Multi-Axis
  Manufacturing

Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing

30 August 2024
George Harabin
Amir M. Mirzendehdel
M. Behandish
    AI4CE
ArXivPDFHTML

Papers citing "Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing"

10 / 10 papers shown
Title
MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
  Reconstruction
MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction
Zehao Yu
Songyou Peng
Michael Niemeyer
Torsten Sattler
Andreas Geiger
100
455
0
01 Jun 2022
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Müller
Alex Evans
Christoph Schied
A. Keller
261
3,970
0
16 Jan 2022
Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance
  Fields
Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields
Dor Verbin
Peter Hedman
B. Mildenhall
Todd E. Zickler
Jonathan T. Barron
Pratul P. Srinivasan
80
592
0
07 Dec 2021
Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Jonathan T. Barron
B. Mildenhall
Dor Verbin
Pratul P. Srinivasan
Peter Hedman
135
1,659
0
23 Nov 2021
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
  Fields
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
Jonathan T. Barron
B. Mildenhall
Matthew Tancik
Peter Hedman
Ricardo Martín Brualla
Pratul P. Srinivasan
77
1,945
0
24 Mar 2021
Learned Initializations for Optimizing Coordinate-Based Neural
  Representations
Learned Initializations for Optimizing Coordinate-Based Neural Representations
Matthew Tancik
B. Mildenhall
Terrance Wang
Divi Schmidt
Pratul P. Srinivasan
Jonathan T. Barron
Ren Ng
95
288
0
03 Dec 2020
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D
  Reconstruction
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction
Rohan Chabra
J. E. Lenssen
Eddy Ilg
Tanner Schmidt
Julian Straub
S. Lovegrove
Richard Newcombe
55
462
0
24 Mar 2020
Differentiable Volumetric Rendering: Learning Implicit 3D
  Representations without 3D Supervision
Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision
Michael Niemeyer
L. Mescheder
Michael Oechsle
Andreas Geiger
3DH
3DV
60
989
0
16 Dec 2019
The Expressive Power of Neural Networks: A View from the Width
The Expressive Power of Neural Networks: A View from the Width
Zhou Lu
Hongming Pu
Feicheng Wang
Zhiqiang Hu
Liwei Wang
69
886
0
08 Sep 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
763
11,793
0
09 Mar 2017
1