ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.01567
  4. Cited By
Convergence of Noise-Free Sampling Algorithms with Regularized
  Wasserstein Proximals

Convergence of Noise-Free Sampling Algorithms with Regularized Wasserstein Proximals

3 September 2024
Fuqun Han
Stanley Osher
Wuchen Li
ArXivPDFHTML

Papers citing "Convergence of Noise-Free Sampling Algorithms with Regularized Wasserstein Proximals"

2 / 2 papers shown
Title
Optimal score estimation via empirical Bayes smoothing
Optimal score estimation via empirical Bayes smoothing
Andre Wibisono
Yihong Wu
Kaylee Yingxi Yang
54
20
0
12 Feb 2024
Sampling is as easy as learning the score: theory for diffusion models
  with minimal data assumptions
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
135
247
0
22 Sep 2022
1