ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.01420
  4. Cited By
Erasure Coded Neural Network Inference via Fisher Averaging

Erasure Coded Neural Network Inference via Fisher Averaging

2 September 2024
Divyansh Jhunjhunwala
Neharika Jali
Gauri Joshi
Shiqiang Wang
    MoMe
    FedML
ArXivPDFHTML

Papers citing "Erasure Coded Neural Network Inference via Fisher Averaging"

19 / 19 papers shown
Title
Dataless Knowledge Fusion by Merging Weights of Language Models
Dataless Knowledge Fusion by Merging Weights of Language Models
Xisen Jin
Xiang Ren
Daniel Preoţiuc-Pietro
Pengxiang Cheng
FedML
MoMe
57
236
0
19 Dec 2022
Editing Models with Task Arithmetic
Editing Models with Task Arithmetic
Gabriel Ilharco
Marco Tulio Ribeiro
Mitchell Wortsman
Suchin Gururangan
Ludwig Schmidt
Hannaneh Hajishirzi
Ali Farhadi
KELM
MoMe
MU
170
486
0
08 Dec 2022
A Review of Sparse Expert Models in Deep Learning
A Review of Sparse Expert Models in Deep Learning
W. Fedus
J. Dean
Barret Zoph
MoE
95
150
0
04 Sep 2022
Tackling Heterogeneous Traffic in Multi-access Systems via Erasure Coded
  Servers
Tackling Heterogeneous Traffic in Multi-access Systems via Erasure Coded Servers
Tuhinangshu Choudhury
Weina Wang
Gauri Joshi
21
4
0
08 Jul 2022
Model soups: averaging weights of multiple fine-tuned models improves
  accuracy without increasing inference time
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
116
976
1
10 Mar 2022
Merging Models with Fisher-Weighted Averaging
Merging Models with Fisher-Weighted Averaging
Michael Matena
Colin Raffel
FedML
MoMe
83
389
0
18 Nov 2021
Model Fusion with Kullback--Leibler Divergence
Model Fusion with Kullback--Leibler Divergence
Sebastian Claici
Mikhail Yurochkin
S. Ghosh
Justin Solomon
FedML
MoMe
43
34
0
13 Jul 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
97
1,038
0
12 Jun 2020
Parity Models: A General Framework for Coding-Based Resilience in ML
  Inference
Parity Models: A General Framework for Coding-Based Resilience in ML Inference
J. Kosaian
K. V. Rashmi
Shivaram Venkataraman
84
14
0
02 May 2019
A Unified Coded Deep Neural Network Training Strategy Based on
  Generalized PolyDot Codes for Matrix Multiplication
A Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multiplication
Sanghamitra Dutta
Ziqian Bai
Haewon Jeong
Tze Meng Low
P. Grover
55
107
0
27 Nov 2018
Deepcode: Feedback Codes via Deep Learning
Deepcode: Feedback Codes via Deep Learning
Hyeji Kim
Yihan Jiang
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
43
142
0
02 Jul 2018
Communication Algorithms via Deep Learning
Communication Algorithms via Deep Learning
Hyeji Kim
Yihan Jiang
Ranvir Rana
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
37
216
0
23 May 2018
Rateless Codes for Near-Perfect Load Balancing in Distributed
  Matrix-Vector Multiplication
Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication
Ankur Mallick
Malhar Chaudhari
Utsav Sheth
Ganesh Palanikumar
Gauri Joshi
56
142
0
27 Apr 2018
Improving Distributed Gradient Descent Using Reed-Solomon Codes
Improving Distributed Gradient Descent Using Reed-Solomon Codes
Wael Halbawi
Navid Azizan
Fariborz Salehi
B. Hassibi
AI4CE
FedML
48
157
0
16 Jun 2017
Ensemble Distillation for Neural Machine Translation
Ensemble Distillation for Neural Machine Translation
Markus Freitag
Yaser Al-Onaizan
B. Sankaran
FedML
50
111
0
06 Feb 2017
Clipper: A Low-Latency Online Prediction Serving System
Clipper: A Low-Latency Online Prediction Serving System
D. Crankshaw
Xin Wang
Giulio Zhou
Michael Franklin
Joseph E. Gonzalez
Ion Stoica
55
673
0
09 Dec 2016
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
317
7,478
0
02 Dec 2016
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
310
19,609
0
09 Mar 2015
New insights and perspectives on the natural gradient method
New insights and perspectives on the natural gradient method
James Martens
ODL
66
620
0
03 Dec 2014
1