ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00924
  4. Cited By
MedSAM-U: Uncertainty-Guided Auto Multi-Prompt Adaptation for Reliable
  MedSAM

MedSAM-U: Uncertainty-Guided Auto Multi-Prompt Adaptation for Reliable MedSAM

2 September 2024
N. Zhou
Ke Zou
Kai Ren
Mengting Luo
Linchao He
Hao Wu
Yidi Chen
Yi Zhang
Hu Chen
Huazhu Fu
    MedIm
ArXivPDFHTML

Papers citing "MedSAM-U: Uncertainty-Guided Auto Multi-Prompt Adaptation for Reliable MedSAM"

3 / 3 papers shown
Title
Leveraging Segment Anything Model for Source-Free Domain Adaptation via Dual Feature Guided Auto-Prompting
Leveraging Segment Anything Model for Source-Free Domain Adaptation via Dual Feature Guided Auto-Prompting
Zheang Huai
Hui Tang
Yi Li
Zhengzhang Chen
Xiaomeng Li
VLM
33
0
0
13 May 2025
Optimization of MedSAM model based on bounding box adaptive perturbation algorithm
Optimization of MedSAM model based on bounding box adaptive perturbation algorithm
Boyi Li
Ye Yuan
Wenjun Tan
AAML
MedIm
33
0
0
25 Mar 2025
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1