ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00265
  4. Cited By
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
v1v2 (latest)

Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction

30 August 2024
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
    XAIAI4TS
ArXiv (abs)PDFHTML

Papers citing "Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction"

14 / 114 papers shown
Title
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAIFaML
452
3,834
0
28 Feb 2017
Time Series Classification from Scratch with Deep Neural Networks: A
  Strong Baseline
Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline
Zhiguang Wang
Weizhong Yan
Tim Oates
AI4TS
136
1,668
0
20 Nov 2016
Representation Learning with Deconvolution for Multivariate Time Series
  Classification and Visualization
Representation Learning with Deconvolution for Multivariate Time Series Classification and Visualization
Zhiguang Wang
Wei Song
Lu Liu
Fan Zhang
Junxiao Xue
Yangdong Ye
Ming Fan
Mingliang Xu
AI4TSFAtt
86
23
0
24 Oct 2016
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
315
2,407
0
21 Jun 2016
Model-Agnostic Interpretability of Machine Learning
Model-Agnostic Interpretability of Machine Learning
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
90
841
0
16 Jun 2016
Towards Better Analysis of Deep Convolutional Neural Networks
Towards Better Analysis of Deep Convolutional Neural Networks
Mengchen Liu
Jiaxin Shi
Zerui Li
Chongxuan Li
Jun Zhu
Shixia Liu
HAI
127
477
0
24 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.3K
17,225
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
380
9,360
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.7K
195,184
0
10 Dec 2015
Explaining NonLinear Classification Decisions with Deep Taylor
  Decomposition
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
79
744
0
08 Dec 2015
WIDER FACE: A Face Detection Benchmark
WIDER FACE: A Face Detection Benchmark
Shuo Yang
Ping Luo
Chen Change Loy
Xiaoou Tang
CVBM
103
1,598
0
20 Nov 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
416
4,683
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
339
7,339
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
645
15,933
0
12 Nov 2013
Previous
123