ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00048
  4. Cited By
No Need to Sacrifice Data Quality for Quantity: Crowd-Informed Machine
  Annotation for Cost-Effective Understanding of Visual Data

No Need to Sacrifice Data Quality for Quantity: Crowd-Informed Machine Annotation for Cost-Effective Understanding of Visual Data

19 August 2024
Christopher Klugmann
Rafid Mahmood
Guruprasad Hegde
Amit Kale
Daniel Kondermann
ArXiv (abs)PDFHTML

Papers citing "No Need to Sacrifice Data Quality for Quantity: Crowd-Informed Machine Annotation for Cost-Effective Understanding of Visual Data"

12 / 12 papers shown
Title
Eliciting and Learning with Soft Labels from Every Annotator
Eliciting and Learning with Soft Labels from Every Annotator
Katherine M. Collins
Umang Bhatt
Adrian Weller
75
46
0
02 Jul 2022
Mitigating Neural Network Overconfidence with Logit Normalization
Mitigating Neural Network Overconfidence with Logit Normalization
Hongxin Wei
Renchunzi Xie
Hao-Ran Cheng
Lei Feng
Bo An
Yixuan Li
OODD
227
286
0
19 May 2022
Unsolved Problems in ML Safety
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
260
294
0
28 Sep 2021
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
565
42,639
0
03 Dec 2019
On the adequacy of untuned warmup for adaptive optimization
On the adequacy of untuned warmup for adaptive optimization
Jerry Ma
Denis Yarats
95
70
0
09 Oct 2019
The Mapillary Traffic Sign Dataset for Detection and Classification on a
  Global Scale
The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale
C. Ertler
Jerneja Mislej
Tobias Ollmann
Lorenzo Porzi
Gerhard Neuhold
Yubin Kuang
75
74
0
10 Sep 2019
Human uncertainty makes classification more robust
Human uncertainty makes classification more robust
Joshua C. Peterson
Ruairidh M. Battleday
Thomas Griffiths
Olga Russakovsky
OOD
64
306
0
19 Aug 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DVMedIm
172
18,193
0
28 May 2019
The EuroCity Persons Dataset: A Novel Benchmark for Object Detection
The EuroCity Persons Dataset: A Novel Benchmark for Object Detection
Markus Braun
Sebastian Krebs
F. Flohr
D. Gavrila
ObjD
74
230
0
18 May 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,877
0
14 Jun 2017
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,615
0
01 Sep 2014
1