ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.17036
37
1

CP-VoteNet: Contrastive Prototypical VoteNet for Few-Shot Point Cloud Object Detection

30 August 2024
Xuejing Li
Weijia Zhang
Chao Ma
    3DPC
ArXivPDFHTML
Abstract

Few-shot point cloud 3D object detection (FS3D) aims to identify and localise objects of novel classes from point clouds, using knowledge learnt from annotated base classes and novel classes with very few annotations. Thus far, this challenging task has been approached using prototype learning, but the performance remains far from satisfactory. We find that in existing methods, the prototypes are only loosely constrained and lack of fine-grained awareness of the semantic and geometrical correlation embedded within the point cloud space. To mitigate these issues, we propose to leverage the inherent contrastive relationship within the semantic and geometrical subspaces to learn more refined and generalisable prototypical representations. To this end, we first introduce contrastive semantics mining, which enables the network to extract discriminative categorical features by constructing positive and negative pairs within training batches. Meanwhile, since point features representing local patterns can be clustered into geometric components, we further propose to impose contrastive relationship at the primitive level. Through refined primitive geometric structures, the transferability of feature encoding from base to novel classes is significantly enhanced. The above designs and insights lead to our novel Contrastive Prototypical VoteNet (CP-VoteNet). Extensive experiments on two FS3D benchmarks FS-ScanNet and FS-SUNRGBD demonstrate that CP-VoteNet surpasses current state-of-the-art methods by considerable margins across different FS3D settings. Further ablation studies conducted corroborate the rationale and effectiveness of our designs.

View on arXiv
Comments on this paper