46
0

What Machine Learning Tells Us About the Mathematical Structure of Concepts

Jun Otsuka
Abstract

This paper examines the connections among various approaches to understanding concepts in philosophy, cognitive science, and machine learning, with a particular focus on their mathematical nature. By categorizing these approaches into Abstractionism, the Similarity Approach, the Functional Approach, and the Invariance Approach, the study highlights how each framework provides a distinct mathematical perspective for modeling concepts. The synthesis of these approaches bridges philosophical theories and contemporary machine learning models, providing a comprehensive framework for future research. This work emphasizes the importance of interdisciplinary dialogue, aiming to enrich our understanding of the complex relationship between human cognition and artificial intelligence.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.