Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.15173
Cited By
Exploiting Approximate Symmetry for Efficient Multi-Agent Reinforcement Learning
27 August 2024
Batuhan Yardim
Niao He
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Exploiting Approximate Symmetry for Efficient Multi-Agent Reinforcement Learning"
18 / 18 papers shown
Title
Last Iterate Convergence in Monotone Mean Field Games
Noboru Isobe
Kenshi Abe
Kaito Ariu
77
0
0
07 Oct 2024
Networked Communication for Mean-Field Games with Function Approximation and Empirical Mean-Field Estimation
Patrick Benjamin
Alessandro Abate
139
1
0
21 Aug 2024
Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL
Jiawei Huang
Niao He
Andreas Krause
103
7
0
08 Feb 2024
Networked Communication for Decentralised Agents in Mean-Field Games
Patrick Benjamin
Alessandro Abate
FedML
138
2
0
05 Jun 2023
Oracle-free Reinforcement Learning in Mean-Field Games along a Single Sample Path
Muhammad Aneeq uz Zaman
Alec Koppel
Sujay Bhatt
Tamer Basar
52
25
0
24 Aug 2022
Learning Graphon Mean Field Games and Approximate Nash Equilibria
Kai Cui
Heinz Koeppl
AI4CE
128
37
0
29 Nov 2021
Generalization in Mean Field Games by Learning Master Policies
Sarah Perrin
Mathieu Laurière
Julien Pérolat
Romuald Élie
Matthieu Geist
Olivier Pietquin
AI4CE
142
37
0
20 Sep 2021
Linear Convergence of Entropy-Regularized Natural Policy Gradient with Linear Function Approximation
Semih Cayci
Niao He
R. Srikant
95
36
0
08 Jun 2021
Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games
Stefanos Leonardos
W. Overman
Ioannis Panageas
Georgios Piliouras
85
123
0
03 Jun 2021
Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning
Kai Cui
Heinz Koeppl
126
94
0
02 Feb 2021
Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications
Sarah Perrin
Julien Perolat
Mathieu Laurière
Matthieu Geist
Romuald Elie
Olivier Pietquin
80
121
0
05 Jul 2020
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
58
27
0
21 Jun 2020
On the Global Convergence Rates of Softmax Policy Gradient Methods
Jincheng Mei
Chenjun Xiao
Csaba Szepesvári
Dale Schuurmans
145
294
0
13 May 2020
Q-Learning in Regularized Mean-field Games
Berkay Anahtarci
Can Deha Kariksiz
Naci Saldi
OOD
84
76
0
24 Mar 2020
Provably Efficient Exploration in Policy Optimization
Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
83
283
0
12 Dec 2019
The StarCraft Multi-Agent Challenge
Mikayel Samvelyan
Tabish Rashid
Christian Schroeder de Witt
Gregory Farquhar
Nantas Nardelli
Tim G. J. Rudner
Chia-Man Hung
Philip Torr
Jakob N. Foerster
Shimon Whiteson
98
958
0
11 Feb 2019
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
550
19,296
0
20 Jul 2017
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
135
3,439
0
08 Jun 2015
1