Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.14728
Cited By
TART: Boosting Clean Accuracy Through Tangent Direction Guided Adversarial Training
27 August 2024
Bongsoo Yi
Rongjie Lai
Yao Li
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"TART: Boosting Clean Accuracy Through Tangent Direction Guided Adversarial Training"
19 / 19 papers shown
Title
On the Real-World Adversarial Robustness of Real-Time Semantic Segmentation Models for Autonomous Driving
Giulio Rossolini
F. Nesti
G. D’Amico
Saasha Nair
Alessandro Biondi
Giorgio Buttazzo
AAML
76
40
0
05 Jan 2022
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
236
273
0
18 Apr 2021
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
57
331
0
07 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
65
278
0
05 Oct 2020
Certifiable Robustness to Adversarial State Uncertainty in Deep Reinforcement Learning
Michael Everett
Bjorn Lutjens
Jonathan P. How
AAML
53
42
0
11 Apr 2020
A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
Zewen Li
Wenjie Yang
Shouheng Peng
Fan Liu
HAI
3DV
129
2,737
0
01 Apr 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
241
1,859
0
03 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
58
404
0
26 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
90
117
0
17 Feb 2020
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
130
754
0
31 May 2019
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
128
912
0
09 Dec 2018
Adversarial Examples: Opportunities and Challenges
Jiliang Zhang
Chen Li
AAML
55
234
0
13 Sep 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
110
1,784
0
30 May 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
319
12,151
0
19 Jun 2017
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
356
8,002
0
23 May 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
174
3,275
0
05 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,529
0
04 Sep 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
1