ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12119
  4. Cited By
Understanding Data Reconstruction Leakage in Federated Learning from a
  Theoretical Perspective

Understanding Data Reconstruction Leakage in Federated Learning from a Theoretical Perspective

22 August 2024
Zifan Wang
Binghui Zhang
Meng Pang
Yuan Hong
Binghui Wang
    FedML
ArXivPDFHTML

Papers citing "Understanding Data Reconstruction Leakage in Federated Learning from a Theoretical Perspective"

2 / 2 papers shown
Title
Systematic Evaluation of Privacy Risks of Machine Learning Models
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
358
0
24 Mar 2020
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,705
0
18 Mar 2020
1