ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.10920
  4. Cited By
Recurrent Neural Networks Learn to Store and Generate Sequences using
  Non-Linear Representations

Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations

20 August 2024
Róbert Csordás
Christopher Potts
Christopher D. Manning
Atticus Geiger
    GAN
ArXivPDFHTML

Papers citing "Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations"

10 / 10 papers shown
Title
MIB: A Mechanistic Interpretability Benchmark
MIB: A Mechanistic Interpretability Benchmark
Aaron Mueller
Atticus Geiger
Sarah Wiegreffe
Dana Arad
Iván Arcuschin
...
Alessandro Stolfo
Martin Tutek
Amir Zur
David Bau
Yonatan Belinkov
51
1
0
17 Apr 2025
On Linear Representations and Pretraining Data Frequency in Language Models
On Linear Representations and Pretraining Data Frequency in Language Models
Jack Merullo
Noah A. Smith
Sarah Wiegreffe
Yanai Elazar
40
0
0
16 Apr 2025
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks
Jiuding Sun
Jing Huang
Sidharth Baskaran
Karel DÓosterlinck
Christopher Potts
Michael Sklar
Atticus Geiger
AI4CE
71
1
0
13 Mar 2025
Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages
Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages
Jannik Brinkmann
Chris Wendler
Christian Bartelt
Aaron Mueller
51
9
0
10 Jan 2025
ICLR: In-Context Learning of Representations
ICLR: In-Context Learning of Representations
Core Francisco Park
Andrew Lee
Ekdeep Singh Lubana
Yongyi Yang
Maya Okawa
Kento Nishi
Martin Wattenberg
Hidenori Tanaka
AIFin
120
3
0
29 Dec 2024
Decomposing The Dark Matter of Sparse Autoencoders
Decomposing The Dark Matter of Sparse Autoencoders
Joshua Engels
Logan Riggs
Max Tegmark
LLMSV
65
10
0
18 Oct 2024
Improving Instruction-Following in Language Models through Activation Steering
Improving Instruction-Following in Language Models through Activation Steering
Alessandro Stolfo
Vidhisha Balachandran
Safoora Yousefi
Eric Horvitz
Besmira Nushi
LLMSV
62
17
0
15 Oct 2024
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
Daking Rai
Yilun Zhou
Shi Feng
Abulhair Saparov
Ziyu Yao
82
19
0
02 Jul 2024
RAVEL: Evaluating Interpretability Methods on Disentangling Language
  Model Representations
RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Jing-ling Huang
Zhengxuan Wu
Christopher Potts
Mor Geva
Atticus Geiger
59
27
0
27 Feb 2024
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
212
497
0
01 Nov 2022
1