Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.09976
Cited By
Preference-Optimized Pareto Set Learning for Blackbox Optimization
19 August 2024
Zhang Haishan
Diptesh Das
Koji Tsuda
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Preference-Optimized Pareto Set Learning for Blackbox Optimization"
22 / 22 papers shown
Title
Federated Communication-Efficient Multi-Objective Optimization
Baris Askin
Pranay Sharma
Gauri Joshi
Carlee Joe-Wong
FedML
208
1
0
21 Oct 2024
Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models
Nikolaos Dimitriadis
P. Frossard
Franccois Fleuret
62
25
0
18 Oct 2022
User-Interactive Offline Reinforcement Learning
Phillip Swazinna
Steffen Udluft
Thomas Runkler
OffRL
71
11
0
21 May 2022
Scalable Pareto Front Approximation for Deep Multi-Objective Learning
Michael Ruchte
Josif Grabocka
59
59
0
24 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
174
233
0
23 Mar 2021
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
179
258
0
15 Oct 2020
Controllable Pareto Multi-Task Learning
Xi Lin
Zhiyuan Yang
Qingfu Zhang
Sam Kwong
MoE
94
74
0
13 Oct 2020
Learning the Pareto Front with Hypernetworks
Aviv Navon
Aviv Shamsian
Gal Chechik
Ethan Fetaya
101
145
0
08 Oct 2020
Sample-efficient Cross-Entropy Method for Real-time Planning
Cristina Pinneri
Shambhuraj Sawant
Sebastian Blaes
Jan Achterhold
Joerg Stueckler
Michal Rolínek
Georg Martius
59
102
0
14 Aug 2020
pymoo: Multi-objective Optimization in Python
Julian Blank
Kalyanmoy Deb
63
1,242
0
22 Jan 2020
Pareto Multi-Task Learning
Xi Lin
Hui-Ling Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
76
349
0
30 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
92
1,020
0
22 Dec 2019
Learning Convex Optimization Control Policies
Akshay Agrawal
Shane T. Barratt
Stephen P. Boyd
Bartolomeo Stellato
59
68
0
19 Dec 2019
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
65
54
0
27 Sep 2019
A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation
Runzhe Yang
Xingyuan Sun
Karthik Narasimhan
74
254
0
21 Aug 2019
The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning
Suyun Liu
Luis Nunes Vicente
107
74
0
10 Jul 2019
The Limited Multi-Label Projection Layer
Brandon Amos
V. Koltun
J. Zico Kolter
56
36
0
20 Jun 2019
Dynamic Weights in Multi-Objective Deep Reinforcement Learning
Axel Abels
D. Roijers
Tom Lenaerts
A. Nowé
Denis Steckelmacher
OffRL
54
162
0
20 Sep 2018
A Tutorial on Bayesian Optimization
P. Frazier
GP
104
1,782
0
08 Jul 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
99
2,004
0
14 Jun 2016
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
131
2,446
0
12 Dec 2010
1