Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.09706
Cited By
MePT: Multi-Representation Guided Prompt Tuning for Vision-Language Model
19 August 2024
Xinyang Wang
Yi Yang
Minfeng Zhu
Kecheng Zheng
Shi Liu
Wei Chen
VPVLM
MLLM
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MePT: Multi-Representation Guided Prompt Tuning for Vision-Language Model"
7 / 7 papers shown
Title
Parameter-Efficient Fine-Tuning for Foundation Models
Dan Zhang
Tao Feng
Lilong Xue
Yuandong Wang
Yuxiao Dong
J. Tang
46
8
0
23 Jan 2025
BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning
Changdae Oh
Hyeji Hwang
Hee-young Lee
Yongtaek Lim
Geunyoung Jung
Jiyoung Jung
Hosik Choi
Kyungwoo Song
VLM
VPVLM
85
57
0
26 Mar 2023
Visual-Language Prompt Tuning with Knowledge-guided Context Optimization
Hantao Yao
Rui Zhang
Changsheng Xu
VLM
VPVLM
127
200
0
23 Mar 2023
CALIP: Zero-Shot Enhancement of CLIP with Parameter-free Attention
Ziyu Guo
Renrui Zhang
Longtian Qiu
Xianzheng Ma
Xupeng Miao
Xuming He
Bin Cui
VLM
AAML
59
109
0
28 Sep 2022
Prompt-aligned Gradient for Prompt Tuning
Beier Zhu
Yulei Niu
Yucheng Han
Yuehua Wu
Hanwang Zhang
VLM
183
271
0
30 May 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
238
806
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,848
0
18 Apr 2021
1