ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.09157
  4. Cited By
On the KL-Divergence-based Robust Satisficing Model

On the KL-Divergence-based Robust Satisficing Model

17 August 2024
Haojie Yan
Minglong Zhou
Jiayi Guo
ArXiv (abs)PDFHTML

Papers citing "On the KL-Divergence-based Robust Satisficing Model"

24 / 24 papers shown
Title
Concentration Bounds for Discrete Distribution Estimation in KL
  Divergence
Concentration Bounds for Discrete Distribution Estimation in KL Divergence
C. Canonne
Ziteng Sun
A. Suresh
111
4
0
14 Feb 2023
RLSbench: Domain Adaptation Under Relaxed Label Shift
RLSbench: Domain Adaptation Under Relaxed Label Shift
Saurabh Garg
Nick Erickson
James Sharpnack
Alexander J. Smola
Sivaraman Balakrishnan
Zachary Chase Lipton
VLM
84
33
0
06 Feb 2023
Domain Adaptation under Open Set Label Shift
Domain Adaptation under Open Set Label Shift
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
OODVLM
61
42
0
26 Jul 2022
Deep Long-Tailed Learning: A Survey
Deep Long-Tailed Learning: A Survey
Yifan Zhang
Bingyi Kang
Bryan Hooi
Shuicheng Yan
Jiashi Feng
VLM
107
588
0
09 Oct 2021
Stochastic Optimization of Areas Under Precision-Recall Curves with
  Provable Convergence
Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence
Qi Qi
Youzhi Luo
Zhao Xu
Shuiwang Ji
Tianbao Yang
47
63
0
18 Apr 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OODAI4CE
248
1,019
0
03 Mar 2021
Coping with Label Shift via Distributionally Robust Optimisation
Coping with Label Shift via Distributionally Robust Optimisation
J.N. Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
71
71
0
23 Oct 2020
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
61
384
0
14 Oct 2020
Tilted Empirical Risk Minimization
Tilted Empirical Risk Minimization
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
72
135
0
02 Jul 2020
Biased Stochastic First-Order Methods for Conditional Stochastic
  Optimization and Applications in Meta Learning
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
92
56
0
25 Feb 2020
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
64
395
0
23 Aug 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
195
2,242
0
05 Jul 2019
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
127
1,607
0
18 Jun 2019
Sample Complexity of Sample Average Approximation for Conditional
  Stochastic Optimization
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
Yifan Hu
Xin Chen
Niao He
56
35
0
28 May 2019
Large-Scale Long-Tailed Recognition in an Open World
Large-Scale Long-Tailed Recognition in an Open World
Ziwei Liu
Zhongqi Miao
Xiaohang Zhan
Jiayun Wang
Boqing Gong
Stella X. Yu
151
1,163
0
10 Apr 2019
Learning Models with Uniform Performance via Distributionally Robust
  Optimization
Learning Models with Uniform Performance via Distributionally Robust Optimization
John C. Duchi
Hongseok Namkoong
OOD
66
423
0
20 Oct 2018
Adaptive Cost-sensitive Online Classification
Adaptive Cost-sensitive Online Classification
P. Zhao
Yifan Zhang
Min-man Wu
Guosheng Lin
Mingkui Tan
Junzhou Huang
41
64
0
06 Apr 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OODNoLa
149
1,431
0
24 Mar 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
64
1,356
0
16 Feb 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
827
11,943
0
09 Mar 2017
Variance-based regularization with convex objectives
Variance-based regularization with convex objectives
John C. Duchi
Hongseok Namkoong
76
351
0
08 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
122
1,775
0
19 Sep 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,121
0
20 Dec 2014
Rényi Divergence and Kullback-Leibler Divergence
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
90
1,341
0
12 Jun 2012
1