ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.07910
45
2

DM2RM: Dual-Mode Multimodal Ranking for Target Objects and Receptacles Based on Open-Vocabulary Instructions

15 August 2024
Ryosuke Korekata
Kanta Kaneda
Shunya Nagashima
Yuto Imai
Komei Sugiura
    ObjD
    LM&Ro
ArXivPDFHTML
Abstract

In this study, we aim to develop a domestic service robot (DSR) that, guided by open-vocabulary instructions, can carry everyday objects to the specified pieces of furniture. Few existing methods handle mobile manipulation tasks with open-vocabulary instructions in the image retrieval setting, and most do not identify both the target objects and the receptacles. We propose the Dual-Mode Multimodal Ranking model (DM2RM), which enables images of both the target objects and receptacles to be retrieved using a single model based on multimodal foundation models. We introduce a switching mechanism that leverages a mode token and phrase identification via a large language model to switch the embedding space based on the prediction target. To evaluate the DM2RM, we construct a novel dataset including real-world images collected from hundreds of building-scale environments and crowd-sourced instructions with referring expressions. The evaluation results show that the proposed DM2RM outperforms previous approaches in terms of standard metrics in image retrieval settings. Furthermore, we demonstrate the application of the DM2RM on a standardized real-world DSR platform including fetch-and-carry actions, where it achieves a task success rate of 82% despite the zero-shot transfer setting. Demonstration videos, code, and more materials are available at https://kkrr10.github.io/dm2rm/.

View on arXiv
Comments on this paper