Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.07201
Cited By
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
13 August 2024
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology"
6 / 6 papers shown
Title
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
70
2
0
08 Mar 2025
A physics-informed neural network method for the approximation of slow invariant manifolds for the general class of stiff systems of ODEs
Dimitrios G. Patsatzis
Lucia Russo
Constantinos Siettos
PINN
20
1
0
18 Mar 2024
AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression
Mario De Florio
Ioannis G. Kevrekidis
George Karniadakis
41
16
0
21 Dec 2023
A Method for Computing Inverse Parametric PDE Problems with Random-Weight Neural Networks
S. Dong
Yiran Wang
29
20
0
09 Oct 2022
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
759
0
13 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1