ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.05560
  4. Cited By
Incremental Gauss-Newton Descent for Machine Learning

Incremental Gauss-Newton Descent for Machine Learning

10 August 2024
Mikalai Korbit
Mario Zanon
    ODL
ArXiv (abs)PDFHTML

Papers citing "Incremental Gauss-Newton Descent for Machine Learning"

11 / 11 papers shown
Title
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional
  Optimization
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
52
24
0
17 Feb 2020
Demon: Improved Neural Network Training with Momentum Decay
Demon: Improved Neural Network Training with Momentum Decay
John Chen
Cameron R. Wolfe
Zhaoqi Li
Anastasios Kyrillidis
ODL
68
15
0
11 Oct 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
56
558
0
17 Jun 2019
Why gradient clipping accelerates training: A theoretical justification
  for adaptivity
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
76
467
0
28 May 2019
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRLAI4CE
150
1,263
0
30 Nov 2018
Convergence of Gradient Descent on Separable Data
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
76
169
0
05 Mar 2018
Practical Gauss-Newton Optimisation for Deep Learning
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
61
232
0
12 Jun 2017
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
104
1,023
0
19 Mar 2015
Training Neural Networks with Stochastic Hessian-Free Optimization
Training Neural Networks with Stochastic Hessian-Free Optimization
Ryan Kiros
BDL
100
48
0
16 Jan 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
163
6,630
0
22 Dec 2012
Krylov Subspace Descent for Deep Learning
Krylov Subspace Descent for Deep Learning
Oriol Vinyals
Daniel Povey
ODL
76
148
0
18 Nov 2011
1