Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.05560
Cited By
Incremental Gauss-Newton Descent for Machine Learning
10 August 2024
Mikalai Korbit
Mario Zanon
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Incremental Gauss-Newton Descent for Machine Learning"
11 / 11 papers shown
Title
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
52
24
0
17 Feb 2020
Demon: Improved Neural Network Training with Momentum Decay
John Chen
Cameron R. Wolfe
Zhaoqi Li
Anastasios Kyrillidis
ODL
68
15
0
11 Oct 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
56
558
0
17 Jun 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
76
467
0
28 May 2019
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
150
1,263
0
30 Nov 2018
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
76
169
0
05 Mar 2018
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
61
232
0
12 Jun 2017
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
104
1,023
0
19 Mar 2015
Training Neural Networks with Stochastic Hessian-Free Optimization
Ryan Kiros
BDL
100
48
0
16 Jan 2013
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
163
6,630
0
22 Dec 2012
Krylov Subspace Descent for Deep Learning
Oriol Vinyals
Daniel Povey
ODL
76
148
0
18 Nov 2011
1