ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.03330
  4. Cited By
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems

Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems

19 July 2024
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
ArXivPDFHTML

Papers citing "Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems"

19 / 19 papers shown
Title
Modeling Neural Activity with Conditionally Linear Dynamical Systems
Modeling Neural Activity with Conditionally Linear Dynamical Systems
Victor Geadah
Amin Nejatbakhsh
David Lipshutz
Jonathan W. Pillow
Alex H. Williams
AI4CE
185
0
0
25 Feb 2025
Amortized Reparametrization: Efficient and Scalable Variational
  Inference for Latent SDEs
Amortized Reparametrization: Efficient and Scalable Variational Inference for Latent SDEs
Kevin Course
P. Nair
66
3
0
16 Dec 2023
Trainability, Expressivity and Interpretability in Gated Neural ODEs
Trainability, Expressivity and Interpretability in Gated Neural ODEs
T. Kim
T. Can
K. Krishnamurthy
AI4CE
60
5
0
12 Jul 2023
Variational Gaussian Process Diffusion Processes
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
52
5
0
03 Jun 2023
Decomposed Linear Dynamical Systems (dLDS) for learning the latent
  components of neural dynamics
Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
Noga Mudrik
Yenho Chen
Eva Yezerets
Christopher Rozell
Adam S. Charles
68
16
0
07 Jun 2022
Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
Lukas Kohs
Bastian Alt
Heinz Koeppl
36
3
0
18 May 2022
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
53
20
0
05 Nov 2021
Reverse engineering recurrent neural networks with Jacobian switching
  linear dynamical systems
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems
Jimmy T.H. Smith
Scott W. Linderman
David Sussillo
70
28
0
01 Nov 2021
Variational Inference for Continuous-Time Switching Dynamical Systems
Variational Inference for Continuous-Time Switching Dynamical Systems
Lukas Kohs
Bastian Alt
Heinz Koeppl
55
8
0
29 Sep 2021
Learning non-stationary Langevin dynamics from stochastic observations
  of latent trajectories
Learning non-stationary Langevin dynamics from stochastic observations of latent trajectories
M. Genkin
Owen K. Hughes
Tatiana A. Engel
37
24
0
29 Dec 2020
Learning interpretable continuous-time models of latent stochastic
  dynamical systems
Learning interpretable continuous-time models of latent stochastic dynamical systems
Lea Duncker
G. Bohner
Julien Boussard
M. Sahani
27
75
0
12 Feb 2019
Tree-Structured Recurrent Switching Linear Dynamical Systems for
  Multi-Scale Modeling
Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling
Josue Nassar
Scott W. Linderman
M. Bugallo
Il-Su Park
AI4CE
28
73
0
29 Nov 2018
Empirical fixed point bifurcation analysis
Empirical fixed point bifurcation analysis
G. Bohner
M. Sahani
30
3
0
04 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
293
5,024
0
19 Jun 2018
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
57
112
0
30 May 2017
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
213
4,748
0
04 Jan 2016
Expectation propagation for continuous time stochastic processes
Expectation propagation for continuous time stochastic processes
Botond Cseke
David Schnoerr
Manfred Opper
G. Sanguinetti
42
19
0
18 Dec 2015
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
79
160
0
23 Nov 2015
Variational Gaussian Process State-Space Models
Variational Gaussian Process State-Space Models
R. Frigola
Yutian Chen
C. Rasmussen
BDL
44
177
0
18 Jun 2014
1