ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.02131
  4. Cited By
Model Hijacking Attack in Federated Learning

Model Hijacking Attack in Federated Learning

4 August 2024
Zheng Li
Siyuan Wu
Ruichuan Chen
Paarijaat Aditya
Istemi Ekin Akkus
Manohar Vanga
Min Zhang
Hao Li
Yang Zhang
    FedML
    AAML
ArXivPDFHTML

Papers citing "Model Hijacking Attack in Federated Learning"

8 / 8 papers shown
Title
Federated Learning for Wireless Communications: Motivation,
  Opportunities and Challenges
Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
Solmaz Niknam
Harpreet S. Dhillon
J. H. Reed
55
600
0
30 Jul 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
44
1,343
0
07 Mar 2019
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
128
4,957
0
30 Jul 2018
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for
  Regression Learning
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning
Matthew Jagielski
Alina Oprea
Battista Biggio
Chang-rui Liu
Cristina Nita-Rotaru
Yue Liu
AAML
71
757
0
01 Apr 2018
Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in
  Unconstrained Environments
Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments
Tianyue Zheng
Weihong Deng
Jiani Hu
CVBM
51
414
0
28 Aug 2017
BadNets: Identifying Vulnerabilities in the Machine Learning Model
  Supply Chain
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
Tianyu Gu
Brendan Dolan-Gavitt
S. Garg
SILM
72
1,758
0
22 Aug 2017
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
269
4,620
0
18 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
229
17,328
0
17 Feb 2016
1