ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.20253
  4. Cited By
Improving EEG Classification Through Randomly Reassembling Original and
  Generated Data with Transformer-based Diffusion Models

Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models

20 July 2024
Mingzhi Chen
Yiyu Gui
Yuqi Su
Yuesheng Zhu
Guibo Luo
Yuchao Yang
    DiffM
    MedIm
ArXivPDFHTML

Papers citing "Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models"

11 / 11 papers shown
Title
Do Generated Data Always Help Contrastive Learning?
Do Generated Data Always Help Contrastive Learning?
Yifei Wang
Jizhe Zhang
Yisen Wang
DiffM
57
23
0
19 Mar 2024
Enhancing EEG Signal-Based Emotion Recognition with Synthetic Data:
  Diffusion Model Approach
Enhancing EEG Signal-Based Emotion Recognition with Synthetic Data: Diffusion Model Approach
Gourav Siddhad
Masakazu Iwamura
Partha Pratim Roy
DiffM
42
7
0
30 Jan 2024
Classifier-Free Diffusion Guidance
Classifier-Free Diffusion Guidance
Jonathan Ho
Tim Salimans
FaML
131
3,830
0
26 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
70
35
0
29 Jun 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
201
30,069
0
01 Mar 2022
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
592
4,735
0
13 May 2019
CBAM: Convolutional Block Attention Module
CBAM: Convolutional Block Attention Module
Sanghyun Woo
Jongchan Park
Joon-Young Lee
In So Kweon
191
16,337
0
17 Jul 2018
EEG-GAN: Generative adversarial networks for electroencephalograhic
  (EEG) brain signals
EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
K. Hartmann
R. Schirrmeister
T. Ball
GAN
AI4TS
48
231
0
05 Jun 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
192
4,928
0
02 Nov 2017
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer
  Interfaces
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
Vernon J. Lawhern
Amelia J. Solon
Nicholas R. Waytowich
Stephen M. Gordon
C. Hung
Brent Lance
OOD
86
2,855
0
23 Nov 2016
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
395
16,962
0
20 Dec 2013
1