Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.19703
Cited By
Efficient Byzantine-Robust and Provably Privacy-Preserving Federated Learning
29 July 2024
Chenfei Nie
Qiang Li
Yuxin Yang
Yuede Ji
Binghui Wang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Efficient Byzantine-Robust and Provably Privacy-Preserving Federated Learning"
20 / 20 papers shown
Title
Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence
Shuya Feng
Meisam Mohammady
Hanbin Hong
Shenao Yan
Ashish Kundu
Binghui Wang
Yuan Hong
FedML
86
3
0
20 Jul 2024
Inf2Guard: An Information-Theoretic Framework for Learning Privacy-Preserving Representations against Inference Attacks
Sayedeh Leila Noorbakhsh
Binghui Zhang
Yuan Hong
Binghui Wang
AAML
100
10
0
04 Mar 2024
Task-Agnostic Privacy-Preserving Representation Learning for Federated Learning Against Attribute Inference Attacks
Caridad Arroyo Arevalo
Sayedeh Leila Noorbakhsh
Yun Dong
Yuan Hong
Binghui Wang
98
16
0
12 Dec 2023
FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients
Zaixi Zhang
Xiaoyu Cao
Jin Jia
Neil Zhenqiang Gong
AAML
FedML
94
224
0
19 Jul 2022
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
71
43
0
08 Nov 2021
Gradient Inversion with Generative Image Prior
Jinwoo Jeon
Jaechang Kim
Kangwook Lee
Sewoong Oh
Jungseul Ok
77
158
0
28 Oct 2021
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
98
182
0
18 Dec 2020
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
54
137
0
15 Oct 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
121
1,234
0
31 Mar 2020
iDLG: Improved Deep Leakage from Gradients
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
81
643
0
08 Jan 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
139
669
0
31 Dec 2019
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedML
AAML
114
185
0
29 Dec 2019
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
Minghong Fang
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
OOD
FedML
128
1,122
0
26 Nov 2019
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
129
1,628
0
01 Nov 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
128
2,676
0
04 Feb 2019
RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets
Liping Li
Canran Xu
Xiangnan He
Yixin Cao
Tat-Seng Chua
FedML
128
600
0
09 Nov 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
159
1,486
0
10 May 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
133
1,520
0
05 Mar 2018
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
141
1,413
0
24 Feb 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
414
17,615
0
17 Feb 2016
1