Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.19683
Cited By
Revisiting the robustness of post-hoc interpretability methods
29 July 2024
Jiawen Wei
Hugues Turbé
G. Mengaldo
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting the robustness of post-hoc interpretability methods"
13 / 13 papers shown
Title
Explainable AI for clinical and remote health applications: a survey on tabular and time series data
Flavio Di Martino
Franca Delmastro
AI4TS
33
93
0
14 Sep 2022
Rethinking Stability for Attribution-based Explanations
Chirag Agarwal
Nari Johnson
Martin Pawelczyk
Satyapriya Krishna
Eshika Saxena
Marinka Zitnik
Himabindu Lakkaraju
FAtt
49
50
0
14 Mar 2022
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
70
219
0
01 May 2020
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
44
329
0
19 Jun 2019
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
68
201
0
06 Feb 2019
The UCR Time Series Archive
Hoang Anh Dau
A. Bagnall
Kaveh Kamgar
Chin-Chia Michael Yeh
Yan Zhu
Shaghayegh Gharghabi
C. Ratanamahatana
Eamonn Keogh
33
819
0
17 Oct 2018
Deep learning for time series classification: a review
Hassan Ismail Fawaz
Germain Forestier
J. Weber
L. Idoumghar
Pierre-Alain Muller
AI4TS
AI4CE
228
2,668
0
12 Sep 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
50
524
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
94
938
0
20 Jun 2018
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
48
1,186
0
28 Aug 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
96
3,848
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
85
5,920
0
04 Mar 2017
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
244
15,825
0
12 Nov 2013
1