ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.17611
  4. Cited By
Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold
  Networks

Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks

24 July 2024
Spyros Rigas
M. Papachristou
Theofilos Papadopoulos
Fotios Anagnostopoulos
Georgios Alexandridis
    AI4CE
ArXivPDFHTML

Papers citing "Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks"

21 / 21 papers shown
Title
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
Sidharth S. Menon
Ameya D. Jagtap
PINN
340
0
0
06 May 2025
Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks
Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks
Yihang Gao
Michael K. Ng
Vincent Y. F. Tan
220
0
0
17 Feb 2025
KAA: Kolmogorov-Arnold Attention for Enhancing Attentive Graph Neural Networks
KAA: Kolmogorov-Arnold Attention for Enhancing Attentive Graph Neural Networks
Taoran Fang
Tianhong Gao
Chunping Wang
Yihao Shang
Wei Chow
Lei Chen
Yang Yang
151
2
0
23 Jan 2025
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
89
7
0
02 Oct 2024
On the expressiveness and spectral bias of KANs
On the expressiveness and spectral bias of KANs
Yixuan Wang
Jonathan W. Siegel
Ziming Liu
Thomas Y. Hou
89
12
0
02 Oct 2024
KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example
KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example
Johannes Erdmann
F. Mausolf
Jan Lukas Späh
188
4
0
05 Aug 2024
Deep State Space Recurrent Neural Networks for Time Series Forecasting
Deep State Space Recurrent Neural Networks for Time Series Forecasting
Hugo Inzirillo
AI4TS
47
6
0
21 Jul 2024
U-KAN Makes Strong Backbone for Medical Image Segmentation and
  Generation
U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation
Chenxin Li
Xinyu Liu
Wenbo Li
Cheng Wang
Hengyu Liu
Yifan Liu
Zhen Chen
Yixuan Yuan
MedIm
DiffM
SSeg
105
132
0
05 Jun 2024
A Temporal Kolmogorov-Arnold Transformer for Time Series Forecasting
A Temporal Kolmogorov-Arnold Transformer for Time Series Forecasting
Remi Genet
Hugo Inzirillo
AI4TS
90
44
0
04 Jun 2024
RoPINN: Region Optimized Physics-Informed Neural Networks
RoPINN: Region Optimized Physics-Informed Neural Networks
Haixu Wu
Huakun Luo
Yuezhou Ma
Jianmin Wang
Mingsheng Long
AI4CE
53
8
0
23 May 2024
Kolmogorov-Arnold Networks are Radial Basis Function Networks
Kolmogorov-Arnold Networks are Radial Basis Function Networks
Ziyao Li
100
76
0
10 May 2024
KAN: Kolmogorov-Arnold Networks
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
235
546
0
30 Apr 2024
An Expert's Guide to Training Physics-informed Neural Networks
An Expert's Guide to Training Physics-informed Neural Networks
Sizhuang He
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
90
107
0
16 Aug 2023
A comprehensive study of non-adaptive and residual-based adaptive
  sampling for physics-informed neural networks
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
84
374
0
21 Jul 2022
Efficient training of physics-informed neural networks via importance
  sampling
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
116
233
0
26 Apr 2021
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
133
909
0
28 Jul 2020
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
141
1,438
0
22 Jun 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
84
613
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
75
924
0
28 Nov 2017
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
158
2,803
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
1