ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15693
  4. Cited By
Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities

Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities

22 July 2024
José A. Carrillo
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Dongyi Wei
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities"

11 / 11 papers shown
Title
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
151
2
0
28 Jan 2025
A Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces
A Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
Yufei Zhang
72
12
0
04 Oct 2023
Ensemble Markov chain Monte Carlo with teleporting walkers
Ensemble Markov chain Monte Carlo with teleporting walkers
M. Lindsey
Jonathan Weare
Anna Zhang
51
17
0
04 Jun 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
69
156
0
24 Mar 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
233
786
0
13 Mar 2020
Information Newton's flow: second-order optimization method in
  probability space
Information Newton's flow: second-order optimization method in probability space
Yifei Wang
Wuchen Li
84
31
0
13 Jan 2020
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDLUQCV
87
808
0
07 Feb 2019
Global convergence of neuron birth-death dynamics
Global convergence of neuron birth-death dynamics
Grant M. Rotskoff
Samy Jelassi
Joan Bruna
Eric Vanden-Eijnden
41
46
0
05 Feb 2019
Earth System Modeling 2.0: A Blueprint for Models That Learn From
  Observations and Targeted High-Resolution Simulations
Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations
T. Schneider
Shiwei Lan
Andrew M. Stuart
J. Teixeira
AI4Cl
71
319
0
31 Aug 2017
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
130
946
0
18 Feb 2015
Dimension-independent likelihood-informed MCMC
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
56
199
0
13 Nov 2014
1