ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15023
  4. Cited By
ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage
  Prediction for 6G Vehicular Networks

ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks

27 June 2024
Ghazi Gharsallah
Georges Kaddoum
ArXivPDFHTML

Papers citing "ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks"

2 / 2 papers shown
Title
V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
  Transformer
V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer
Runsheng Xu
Hao Xiang
Zhengzhong Tu
Xin Xia
Ming-Hsuan Yang
Jiaqi Ma
ViT
119
364
0
20 Mar 2022
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
315
36,414
0
08 Jun 2015
1