Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.12950
Cited By
v1
v2 (latest)
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
17 July 2024
Qi Huang
Emanuele Mezzi
Osman Mutlu
Miltiadis Kofinas
Vidya Prasad
Shadnan Azwad Khan
Elena Ranguelova
Niki van Stein
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI"
20 / 20 papers shown
Title
The Co-12 Recipe for Evaluating Interpretable Part-Prototype Image Classifiers
Meike Nauta
Christin Seifert
80
11
0
26 Jul 2023
Why Should I Choose You? AutoXAI: A Framework for Selecting and Tuning eXplainable AI Solutions
Robin Cugny
Julien Aligon
Max Chevalier
G. Roman-Jimenez
O. Teste
48
14
0
06 Oct 2022
SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability
Wei Huang
Xingyu Zhao
Gao Jin
Xiaowei Huang
AAML
59
30
0
19 Aug 2022
OmniXAI: A Library for Explainable AI
Wenzhuo Yang
Hung Le
Tanmay Laud
Silvio Savarese
Guosheng Lin
SyDa
37
40
0
01 Jun 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
47
175
0
14 Feb 2022
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELM
XAI
100
409
0
20 Jan 2022
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
437
15,515
0
20 Dec 2021
Interactive Analysis of CNN Robustness
Stefan Sietzen
Mathias Lechner
Judy Borowski
Ramin Hasani
Manuela Waldner
AAML
62
10
0
14 Oct 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
105
66
0
23 Jun 2021
An Experimental Study of Semantic Continuity for Deep Learning Models
Shangxi Wu
Dongyuan Lu
Xian Zhao
Lizhang Chen
Jitao Sang
68
2
0
19 Nov 2020
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
133
843
0
16 Sep 2020
InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs
Yujun Shen
Ceyuan Yang
Xiaoou Tang
Bolei Zhou
GAN
CVBM
65
599
0
18 May 2020
Benchmarking Attribution Methods with Relative Feature Importance
Mengjiao Yang
Been Kim
FAtt
XAI
69
141
0
23 Jul 2019
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,171
0
19 Jun 2018
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
312
20,023
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
274
2,599
0
28 Mar 2008
1