ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.12330
  4. Cited By
Uncertainty Calibration with Energy Based Instance-wise Scaling in the
  Wild Dataset

Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset

17 July 2024
Mijoo Kim
Junseok Kwon
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset"

20 / 20 papers shown
Title
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration
The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
UQCV
50
68
0
30 Nov 2021
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
96
365
0
15 Jun 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
421
21,347
0
25 Mar 2021
Parameterized Temperature Scaling for Boosting the Expressive Power in
  Post-Hoc Uncertainty Calibration
Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration
Christian Tomani
Daniel Cremers
Florian Buettner
UQCV
44
36
0
24 Feb 2021
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
Christian Tomani
Sebastian Gruber
Muhammed Ebrar Erdem
Daniel Cremers
Florian Buettner
UQCV
156
66
0
20 Dec 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
265
1,354
0
08 Oct 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
312
1,727
0
29 Jun 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
66
227
0
16 Mar 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning
  from Out-of-distribution Data
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
87
570
0
26 Feb 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
81
459
0
21 Feb 2020
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
193
1,465
0
16 Jul 2019
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
81
81
0
12 Jun 2019
When Does Label Smoothing Help?
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
183
1,938
0
06 Jun 2019
Learning Robust Global Representations by Penalizing Local Predictive
  Power
Learning Robust Global Representations by Penalizing Local Predictive Power
Haohan Wang
Songwei Ge
Eric Xing
Zachary Chase Lipton
OOD
109
957
0
29 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
165
3,423
0
28 Mar 2019
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
401
26,365
0
05 Sep 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
731
36,708
0
25 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
326
7,971
0
23 May 2016
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.5K
100,213
0
04 Sep 2014
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
108
2,661
0
14 Nov 2013
1