ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.07358
  4. Cited By
SGM-PINN: Sampling Graphical Models for Faster Training of
  Physics-Informed Neural Networks

SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks

10 July 2024
John Anticev
Ali Aghdaei
Wuxinlin Cheng
Zhuo Feng
    AI4CE
ArXivPDFHTML

Papers citing "SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks"

6 / 6 papers shown
Title
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
  Scientific Computing
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
53
50
0
14 Nov 2022
Efficient training of physics-informed neural networks via importance
  sampling
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
107
232
0
26 Apr 2021
SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation
SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation
Wuxinlin Cheng
Chenhui Deng
Zhiqiang Zhao
Yaohui Cai
Zhiru Zhang
Zhuo Feng
AAML
41
14
0
07 Feb 2021
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
121
906
0
28 Jul 2020
DeepXDE: A deep learning library for solving differential equations
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
95
1,525
0
10 Jul 2019
Sigmoid-Weighted Linear Units for Neural Network Function Approximation
  in Reinforcement Learning
Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning
Stefan Elfwing
E. Uchibe
Kenji Doya
128
1,717
0
10 Feb 2017
1