ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.07082
  4. Cited By
Can Learned Optimization Make Reinforcement Learning Less Difficult?
v1v2v3 (latest)

Can Learned Optimization Make Reinforcement Learning Less Difficult?

9 July 2024
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
ArXiv (abs)PDFHTML

Papers citing "Can Learned Optimization Make Reinforcement Learning Less Difficult?"

50 / 64 papers shown
Title
Celo: Training Versatile Learned Optimizers on a Compute Diet
Celo: Training Versatile Learned Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
427
0
0
23 Jun 2025
Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks
Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks
Michael T. Matthews
Michael Beukman
Chris Xiaoxuan Lu
Jakob Foerster
OffRLAI4CE
94
8
0
30 Oct 2024
Simplifying Deep Temporal Difference Learning
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
126
26
0
05 Jul 2024
Disentangling the Causes of Plasticity Loss in Neural Networks
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
H. V. Hasselt
Razvan Pascanu
James Martens
Will Dabney
AI4CE
108
37
0
29 Feb 2024
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement
  Learning
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning
Michael T. Matthews
Michael Beukman
Benjamin Ellis
Mikayel Samvelyan
Matthew Jackson
Samuel Coward
Jakob Foerster
OffRL
76
31
0
26 Feb 2024
Discovering Temporally-Aware Reinforcement Learning Algorithms
Discovering Temporally-Aware Reinforcement Learning Algorithms
Matthew Jackson
Chris Xiaoxuan Lu
Louis Kirsch
R. T. Lange
Shimon Whiteson
Jakob N. Foerster
102
18
0
08 Feb 2024
Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules
  and Training Stages
Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages
Guozheng Ma
Lu Li
Sen Zhang
Zixuan Liu
Zhen Wang
Yixin Chen
Li Shen
Xueqian Wang
Dacheng Tao
OffRL
80
20
0
11 Oct 2023
Small batch deep reinforcement learning
Small batch deep reinforcement learning
J. Obando-Ceron
Marc G. Bellemare
Pablo Samuel Castro
VLM
85
19
0
05 Oct 2023
Discovering General Reinforcement Learning Algorithms with Adversarial
  Environment Design
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
Matthew Jackson
Minqi Jiang
Jack Parker-Holder
Risto Vuorio
Chris Xiaoxuan Lu
Gregory Farquhar
Shimon Whiteson
Jakob N. Foerster
OOD
57
9
0
04 Oct 2023
Resetting the Optimizer in Deep RL: An Empirical Study
Resetting the Optimizer in Deep RL: An Empirical Study
Kavosh Asadi
Rasool Fakoor
Shoham Sabach
ODL
71
25
0
30 Jun 2023
Minigrid & Miniworld: Modular & Customizable Reinforcement Learning
  Environments for Goal-Oriented Tasks
Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks
Maxime Chevalier-Boisvert
Bolun Dai
Mark Towers
Rodrigo de Lazcano
Lucas Willems
Salem Lahlou
Suman Pal
Pablo Samuel Castro
Jordan Terry
VGen
98
212
0
24 Jun 2023
PLASTIC: Improving Input and Label Plasticity for Sample Efficient
  Reinforcement Learning
PLASTIC: Improving Input and Label Plasticity for Sample Efficient Reinforcement Learning
Hojoon Lee
Hanseul Cho
Hyunseung Kim
Daehoon Gwak
Joonkee Kim
Jaegul Choo
Se-Young Yun
Chulhee Yun
OffRL
122
29
0
19 Jun 2023
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
J. Obando-Ceron
Rameswar Panda
Marc G. Bellemare
Rishabh Agarwal
Pablo Samuel Castro
OffRL
91
100
0
30 May 2023
Deep Reinforcement Learning with Plasticity Injection
Deep Reinforcement Learning with Plasticity Injection
Evgenii Nikishin
Junhyuk Oh
Georg Ostrovski
Clare Lyle
Razvan Pascanu
Will Dabney
André Barreto
OffRL
47
52
0
24 May 2023
Massively Scalable Inverse Reinforcement Learning in Google Maps
Massively Scalable Inverse Reinforcement Learning in Google Maps
Matt Barnes
Matthew Abueg
Oliver F. Lange
Matt Deeds
Jason M. Trader
Denali Molitor
Markus Wulfmeier
S. O’Banion
68
6
0
18 May 2023
Loss of Plasticity in Continual Deep Reinforcement Learning
Loss of Plasticity in Continual Deep Reinforcement Learning
Zaheer Abbas
Rosie Zhao
Joseph Modayil
Adam White
Marlos C. Machado
CLLOffRL
101
73
0
13 Mar 2023
Understanding plasticity in neural networks
Understanding plasticity in neural networks
Clare Lyle
Zeyu Zheng
Evgenii Nikishin
Bernardo Avila-Pires
Razvan Pascanu
Will Dabney
AI4CE
105
104
0
02 Mar 2023
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
Ghada Sokar
Rishabh Agarwal
Pablo Samuel Castro
Utku Evci
CLL
94
97
0
24 Feb 2023
Symbolic Discovery of Optimization Algorithms
Symbolic Discovery of Optimization Algorithms
Xiangning Chen
Chen Liang
Da Huang
Esteban Real
Kaiyuan Wang
...
Xuanyi Dong
Thang Luong
Cho-Jui Hsieh
Yifeng Lu
Quoc V. Le
154
377
0
13 Feb 2023
Learning to Optimize for Reinforcement Learning
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
79
7
0
03 Feb 2023
evosax: JAX-based Evolution Strategies
evosax: JAX-based Evolution Strategies
R. T. Lange
100
57
0
08 Dec 2022
Transformer-Based Learned Optimization
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
75
11
0
02 Dec 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
106
60
0
17 Nov 2022
Discovered Policy Optimisation
Discovered Policy Optimisation
Chris Xiaoxuan Lu
J. Kuba
Alistair Letcher
Luke Metz
Christian Schroeder de Witt
Jakob N. Foerster
OffRL
72
79
0
11 Oct 2022
The Primacy Bias in Deep Reinforcement Learning
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Rameswar Panda
OnRL
146
194
0
16 May 2022
Understanding and Preventing Capacity Loss in Reinforcement Learning
Understanding and Preventing Capacity Loss in Reinforcement Learning
Clare Lyle
Mark Rowland
Will Dabney
CLL
84
113
0
20 Apr 2022
Practical tradeoffs between memory, compute, and performance in learned
  optimizers
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
138
32
0
22 Mar 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLMALM
886
13,176
0
04 Mar 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
91
68
0
27 Dec 2021
A Survey of Zero-shot Generalisation in Deep Reinforcement Learning
A Survey of Zero-shot Generalisation in Deep Reinforcement Learning
Robert Kirk
Amy Zhang
Edward Grefenstette
Tim Rocktaschel
OffRL
87
170
0
18 Nov 2021
Benchmarking the Spectrum of Agent Capabilities
Benchmarking the Spectrum of Agent Capabilities
Danijar Hafner
ELM
86
140
0
14 Sep 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
123
676
0
30 Aug 2021
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body
  Simulation
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation
C. Freeman
Erik Frey
Anton Raichuk
Sertan Girgin
Igor Mordatch
Olivier Bachem
108
380
0
24 Jun 2021
Correcting Momentum in Temporal Difference Learning
Correcting Momentum in Temporal Difference Learning
Emmanuel Bengio
Joelle Pineau
Doina Precup
34
10
0
07 Jun 2021
A Generalizable Approach to Learning Optimizers
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
82
29
0
02 Jun 2021
Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
  Design
Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design
Michael Dennis
Natasha Jaques
Eugene Vinitsky
Alexandre M. Bayen
Stuart J. Russell
Andrew Critch
Sergey Levine
83
236
0
03 Dec 2020
Tasks, stability, architecture, and compute: Training more effective
  learned optimizers, and using them to train themselves
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
144
61
0
23 Sep 2020
Discovering Reinforcement Learning Algorithms
Discovering Reinforcement Learning Algorithms
Junhyuk Oh
Matteo Hessel
Wojciech M. Czarnecki
Zhongwen Xu
H. V. Hasselt
Satinder Singh
David Silver
67
129
0
17 Jul 2020
Transient Non-Stationarity and Generalisation in Deep Reinforcement
  Learning
Transient Non-Stationarity and Generalisation in Deep Reinforcement Learning
Maximilian Igl
Gregory Farquhar
Jelena Luketina
Wendelin Boehmer
Shimon Whiteson
81
88
0
10 Jun 2020
Improving Generalization in Meta Reinforcement Learning using Learned
  Objectives
Improving Generalization in Meta Reinforcement Learning using Learned Objectives
Louis Kirsch
Sjoerd van Steenkiste
Jürgen Schmidhuber
OffRL
89
119
0
09 Oct 2019
Behaviour Suite for Reinforcement Learning
Behaviour Suite for Reinforcement Learning
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
...
Satinder Singh
Benjamin Van Roy
R. Sutton
David Silver
H. V. Hasselt
OffRL
92
183
0
09 Aug 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
106
2,505
0
19 Apr 2019
Understanding and correcting pathologies in the training of learned
  optimizers
Understanding and correcting pathologies in the training of learned optimizers
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
79
147
0
24 Oct 2018
Where Did My Optimum Go?: An Empirical Analysis of Gradient Descent
  Optimization in Policy Gradient Methods
Where Did My Optimum Go?: An Empirical Analysis of Gradient Descent Optimization in Policy Gradient Methods
Peter Henderson
Joshua Romoff
Joelle Pineau
67
34
0
05 Oct 2018
Meta-Learning Update Rules for Unsupervised Representation Learning
Meta-Learning Update Rules for Unsupervised Representation Learning
Luke Metz
Niru Maheswaranathan
Brian Cheung
Jascha Narain Sohl-Dickstein
SSLOOD
77
123
0
31 Mar 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,406
0
04 Jan 2018
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
  for Training Deep Neural Networks for Reinforcement Learning
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
111
693
0
18 Dec 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
535
19,265
0
20 Jul 2017
Deep reinforcement learning from human preferences
Deep reinforcement learning from human preferences
Paul Christiano
Jan Leike
Tom B. Brown
Miljan Martic
Shane Legg
Dario Amodei
218
3,365
0
12 Jun 2017
Parameter Space Noise for Exploration
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
73
597
0
06 Jun 2017
12
Next