ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.06673
  4. Cited By
CTRL-F: Pairing Convolution with Transformer for Image Classification
  via Multi-Level Feature Cross-Attention and Representation Learning Fusion

CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion

9 July 2024
Hosam S. El-Assiouti
Hadeer El-Saadawy
M. Al-Berry
M. Tolba
    ViT
ArXivPDFHTML

Papers citing "CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion"

39 / 39 papers shown
Title
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision
  Models
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models
Chenglin Yang
Siyuan Qiao
Qihang Yu
Xiaoding Yuan
Yukun Zhu
Alan Yuille
Hartwig Adam
Liang-Chieh Chen
ViT
MoE
71
62
0
04 Oct 2022
EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
  Mobile Vision Applications
EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications
Muhammad Maaz
Abdelrahman M. Shaker
Hisham Cholakkal
Salman Khan
Syed Waqas Zamir
Rao Muhammad Anwer
Fahad Shahbaz Khan
ViT
86
198
0
21 Jun 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
159
5,167
0
10 Jan 2022
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
207
1,809
0
18 Nov 2021
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision
  Transformer
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer
Sachin Mehta
Mohammad Rastegari
ViT
280
1,268
0
05 Oct 2021
Mobile-Former: Bridging MobileNet and Transformer
Mobile-Former: Bridging MobileNet and Transformer
Yinpeng Chen
Xiyang Dai
Dongdong Chen
Mengchen Liu
Xiaoyi Dong
Lu Yuan
Zicheng Liu
ViT
244
488
0
12 Aug 2021
Early Convolutions Help Transformers See Better
Early Convolutions Help Transformers See Better
Tete Xiao
Mannat Singh
Eric Mintun
Trevor Darrell
Piotr Dollár
Ross B. Girshick
47
766
0
28 Jun 2021
PVT v2: Improved Baselines with Pyramid Vision Transformer
PVT v2: Improved Baselines with Pyramid Vision Transformer
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
AI4TS
96
1,665
0
25 Jun 2021
How to train your ViT? Data, Augmentation, and Regularization in Vision
  Transformers
How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers
Andreas Steiner
Alexander Kolesnikov
Xiaohua Zhai
Ross Wightman
Jakob Uszkoreit
Lucas Beyer
ViT
107
632
0
18 Jun 2021
CoAtNet: Marrying Convolution and Attention for All Data Sizes
CoAtNet: Marrying Convolution and Attention for All Data Sizes
Zihang Dai
Hanxiao Liu
Quoc V. Le
Mingxing Tan
ViT
104
1,201
0
09 Jun 2021
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
Yufei Xu
Qiming Zhang
Jing Zhang
Dacheng Tao
ViT
140
338
0
07 Jun 2021
Conformer: Local Features Coupling Global Representations for Visual
  Recognition
Conformer: Local Features Coupling Global Representations for Visual Recognition
Zhiliang Peng
Wei Huang
Shanzhi Gu
Lingxi Xie
Yaowei Wang
Jianbin Jiao
QiXiang Ye
ViT
60
543
0
09 May 2021
EfficientNetV2: Smaller Models and Faster Training
EfficientNetV2: Smaller Models and Faster Training
Mingxing Tan
Quoc V. Le
EgoV
119
2,696
0
01 Apr 2021
CvT: Introducing Convolutions to Vision Transformers
CvT: Introducing Convolutions to Vision Transformers
Haiping Wu
Bin Xiao
Noel Codella
Mengchen Liu
Xiyang Dai
Lu Yuan
Lei Zhang
ViT
147
1,907
0
29 Mar 2021
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
  Classification
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
Chun-Fu Chen
Quanfu Fan
Yikang Shen
ViT
68
1,477
0
27 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
439
21,392
0
25 Mar 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
518
3,718
0
24 Feb 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
377
6,757
0
23 Dec 2020
Designing Network Design Spaces
Designing Network Design Spaces
Ilija Radosavovic
Raj Prateek Kosaraju
Ross B. Girshick
Kaiming He
Piotr Dollár
GNN
100
1,682
0
30 Mar 2020
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
219
3,485
0
30 Sep 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
135
18,106
0
28 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
606
4,777
0
13 May 2019
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
340
6,772
0
06 May 2019
Attention Augmented Convolutional Networks
Attention Augmented Convolutional Networks
Irwan Bello
Barret Zoph
Ashish Vaswani
Jonathon Shlens
Quoc V. Le
132
1,014
0
22 Apr 2019
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
171
4,983
0
30 Jul 2018
Big-Little Net: An Efficient Multi-Scale Feature Representation for
  Visual and Speech Recognition
Big-Little Net: An Efficient Multi-Scale Feature Representation for Visual and Speech Recognition
Chun-Fu Chen
Quanfu Fan
Neil Rohit Mallinar
Tom Sercu
Rogerio Feris
39
96
0
10 Jul 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
178
19,271
0
13 Jan 2018
Non-local Neural Networks
Non-local Neural Networks
Xinyu Wang
Ross B. Girshick
Abhinav Gupta
Kaiming He
OffRL
283
8,902
0
21 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
273
9,759
0
25 Oct 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
422
26,465
0
05 Sep 2017
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Chen Sun
Abhinav Shrivastava
Saurabh Singh
Abhinav Gupta
VLM
182
2,397
0
10 Jul 2017
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
136
6,865
0
04 Jul 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,832
0
17 Apr 2017
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
1.4K
14,555
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
764
36,781
0
25 Aug 2016
Using Deep Learning for Image-Based Plant Disease Detection
Using Deep Learning for Image-Based Plant Disease Detection
Sharada Mohanty
David P. Hughes
M. Salathé
39
3,115
0
11 Apr 2016
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
452
43,635
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,330
0
04 Sep 2014
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
287
26,181
0
11 Nov 2013
1