Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.05237
Cited By
v1
v2
v3 (latest)
Privacy of the last iterate in cyclically-sampled DP-SGD on nonconvex composite losses
7 July 2024
Weiwei Kong
Mónica Ribero
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Privacy of the last iterate in cyclically-sampled DP-SGD on nonconvex composite losses"
15 / 15 papers shown
Title
Privacy Amplification in Differentially Private Zeroth-Order Optimization with Hidden States
Eli Chien
Wei-Ning Chen
P. Li
33
0
0
30 May 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
156
0
0
16 Mar 2025
An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses
Hao Liang
Wentao Zhang
Xinlei He
Kaishun He
Hong Xing
118
0
0
25 Feb 2025
On the Last-Iterate Convergence of Shuffling Gradient Methods
Zijian Liu
Zhengyuan Zhou
103
4
0
12 Mar 2024
Last Iterate Convergence of Incremental Methods and Applications in Continual Learning
Xu Cai
Jelena Diakonikolas
86
6
0
11 Mar 2024
Shifted Interpolation for Differential Privacy
Jinho Bok
Weijie Su
Jason M. Altschuler
126
9
0
01 Mar 2024
Privacy Loss of Noisy Stochastic Gradient Descent Might Converge Even for Non-Convex Losses
S. Asoodeh
Mario Díaz
72
6
0
17 May 2023
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
Jason M. Altschuler
Kunal Talwar
FedML
146
61
0
27 May 2022
Differential Privacy Dynamics of Langevin Diffusion and Noisy Gradient Descent
R. Chourasia
Jiayuan Ye
Reza Shokri
FedML
118
71
0
11 Feb 2021
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
85
211
0
10 May 2020
Rényi Differential Privacy of the Sampled Gaussian Mechanism
Ilya Mironov
Kunal Talwar
Li Zhang
140
287
0
28 Aug 2019
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
94
177
0
20 Aug 2018
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
241
6,199
0
01 Jul 2016
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
279
686
0
04 Nov 2013
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
285
1,491
0
01 Dec 2009
1