ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.04617
  4. Cited By
Randomized Physics-Informed Neural Networks for Bayesian Data
  Assimilation

Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation

5 July 2024
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
ArXiv (abs)PDFHTML

Papers citing "Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation"

13 / 13 papers shown
Title
Randomized Physics-Informed Machine Learning for Uncertainty
  Quantification in High-Dimensional Inverse Problems
Randomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
63
2
0
11 Dec 2023
Bayesian Physics-Informed Neural Networks for real-world nonlinear
  dynamical systems
Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems
K. Linka
Amelie Schäfer
Xuhui Meng
Zongren Zou
George Karniadakis
E. Kuhl
OODPINNAI4CE
75
114
0
12 May 2022
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
72
385
0
29 Apr 2021
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
914
0
28 Jul 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
233
786
0
13 Mar 2020
Physics-Informed Neural Networks for Multiphysics Data Assimilation with
  Application to Subsurface Transport
Physics-Informed Neural Networks for Multiphysics Data Assimilation with Application to Subsurface Transport
Qizhi He
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
AI4CE
52
262
0
06 Dec 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCVBDL
179
113
0
24 Jun 2019
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,092
0
16 Aug 2016
A randomized maximum a posterior method for posterior sampling of high
  dimensional nonlinear Bayesian inverse problems
A randomized maximum a posterior method for posterior sampling of high dimensional nonlinear Bayesian inverse problems
Kainan Wang
T. Bui-Thanh
Omar Ghattas
38
46
0
11 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
285
4,793
0
04 Jan 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
166
2,808
0
20 Feb 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,279
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
166
4,304
0
18 Nov 2011
1