ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.04192
  4. Cited By
KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for
  Learning Dynamical Systems and Hidden Physics

KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics

5 July 2024
Benjamin C. Koenig
Suyong Kim
Sili Deng
ArXivPDFHTML

Papers citing "KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics"

8 / 8 papers shown
Title
SPIN-ODE: Stiff Physics-Informed Neural ODE for Chemical Reaction Rate Estimation
SPIN-ODE: Stiff Physics-Informed Neural ODE for Chemical Reaction Rate Estimation
Wenqing Peng
Zhi-Song Liu
Michael Boy
29
0
0
08 May 2025
iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
Ziran Liang
Rui An
Wenqi Fan
Yanghui Rao
Yuxuan Liang
AI4TS
50
0
0
23 Apr 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
43
0
0
02 Mar 2025
MatrixKAN: Parallelized Kolmogorov-Arnold Network
MatrixKAN: Parallelized Kolmogorov-Arnold Network
Cale Coffman
Lizhong Chen
85
0
0
11 Feb 2025
Variational formulation based on duality to solve partial differential equations: Use of B-splines and machine learning approximants
Variational formulation based on duality to solve partial differential equations: Use of B-splines and machine learning approximants
N. Sukumar
Amit Acharya
81
2
0
02 Dec 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
44
7
0
02 Oct 2024
Kolmogorov-Arnold Networks are Radial Basis Function Networks
Kolmogorov-Arnold Networks are Radial Basis Function Networks
Ziyao Li
54
68
0
10 May 2024
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
1