ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02820
  4. Cited By
Investigating the Contextualised Word Embedding Dimensions Responsible
  for Contextual and Temporal Semantic Changes

Investigating the Contextualised Word Embedding Dimensions Responsible for Contextual and Temporal Semantic Changes

3 July 2024
Taichi Aida
Danushka Bollegala
ArXivPDFHTML

Papers citing "Investigating the Contextualised Word Embedding Dimensions Responsible for Contextual and Temporal Semantic Changes"

4 / 4 papers shown
Title
Analyzing Semantic Change through Lexical Replacements
Analyzing Semantic Change through Lexical Replacements
Francesco Periti
Pierluigi Cassotti
Haim Dubossarsky
Nina Tahmasebi
57
6
0
29 Apr 2024
Time Masking for Temporal Language Models
Time Masking for Temporal Language Models
Guy D. Rosin
Ido Guy
Kira Radinsky
CLL
KELM
171
55
0
12 Oct 2021
Learning Sense-Specific Static Embeddings using Contextualised Word
  Embeddings as a Proxy
Learning Sense-Specific Static Embeddings using Contextualised Word Embeddings as a Proxy
Yi Zhou
Danushka Bollegala
31
9
0
05 Oct 2021
SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection
SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection
Dominik Schlechtweg
Barbara McGillivray
Simon Hengchen
Haim Dubossarsky
Nina Tahmasebi
151
236
0
22 Jul 2020
1