Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.02716
Cited By
Light-weight Fine-tuning Method for Defending Adversarial Noise in Pre-trained Medical Vision-Language Models
2 July 2024
Xu Han
Linghao Jin
Xuezhe Ma
Xiaofeng Liu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Light-weight Fine-tuning Method for Defending Adversarial Noise in Pre-trained Medical Vision-Language Models"
39 / 39 papers shown
Title
BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs
Sheng Zhang
Yanbo Xu
Naoto Usuyama
Hanwen Xu
J. Bagga
...
Carlo Bifulco
M. Lungren
Tristan Naumann
Sheng Wang
Hoifung Poon
LM&MA
MedIm
182
222
0
10 Jan 2025
Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images
Krishnakant Singh
Thanush Navaratnam
Jannik Holmer
Simone Schaub-Meyer
Stefan Roth
DiffM
63
18
0
30 May 2024
ROCOv2: Radiology Objects in COntext Version 2, an Updated Multimodal Image Dataset
Johannes Ruckert
Louise Bloch
Raphael Brüngel
Ahmad Idrissi-Yaghir
Henning Schafer
...
A. G. S. D. Herrera
Henning Müller
Peter A. Horn
F. Nensa
Christoph M. Friedrich
57
30
0
16 May 2024
Revisiting the Adversarial Robustness of Vision Language Models: a Multimodal Perspective
Wanqi Zhou
Shuanghao Bai
Qibin Zhao
Badong Chen
VLM
AAML
80
9
0
30 Apr 2024
Understanding the Effect of Noise in LLM Training Data with Algorithmic Chains of Thought
Alex Havrilla
Maia Iyer
33
8
0
06 Feb 2024
Demonstration of an Adversarial Attack Against a Multimodal Vision Language Model for Pathology Imaging
Poojitha Thota
Jai Prakash Veerla
Partha Sai Guttikonda
M. Nasr
Shirin Nilizadeh
Jacob M. Luber
AAML
51
8
0
04 Jan 2024
On the Robustness of Large Multimodal Models Against Image Adversarial Attacks
Xuanimng Cui
Alejandro Aparcedo
Young Kyun Jang
Ser-Nam Lim
AAML
VLM
41
43
0
06 Dec 2023
Generating Medical Prescriptions with Conditional Transformer
Samuel Belkadi
Nicolo Micheletti
Lifeng Han
Warren Del-Pinto
Goran Nenadic
MedIm
42
5
0
30 Oct 2023
An LLM can Fool Itself: A Prompt-Based Adversarial Attack
Xilie Xu
Keyi Kong
Ning Liu
Li-zhen Cui
Di Wang
Jingfeng Zhang
Mohan Kankanhalli
AAML
SILM
74
82
0
20 Oct 2023
VLATTACK: Multimodal Adversarial Attacks on Vision-Language Tasks via Pre-trained Models
Ziyi Yin
Muchao Ye
Tianrong Zhang
Tianyu Du
Jinguo Zhu
Han Liu
Jinghui Chen
Ting Wang
Fenglong Ma
AAML
VLM
CoGe
59
41
0
07 Oct 2023
Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks
Hao Chen
Jindong Wang
Ankit Shah
Ran Tao
Hongxin Wei
Berfin cSimcsek
Masashi Sugiyama
Bhiksha Raj
60
28
0
29 Sep 2023
LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day
Chunyuan Li
Cliff Wong
Sheng Zhang
Naoto Usuyama
Haotian Liu
Jianwei Yang
Tristan Naumann
Hoifung Poon
Jianfeng Gao
LM&MA
MedIm
95
760
0
01 Jun 2023
Machine Learning for Synthetic Data Generation: A Review
Ying-Cheng Lu
Minjie Shen
Huazheng Wang
Xiao Wang
Capucine Van Rechem
Tianfan Fu
Wenqi Wei
SyDa
70
143
0
08 Feb 2023
Multimodal Deep Learning
Cem Akkus
Jiquan Ngiam
Vladana Djakovic
Steffen Jauch-Walser
A. Khosla
...
Jann Goschenhofer
Honglak Lee
A. Ng
Daniel Schalk
Matthias Aßenmacher
81
3,166
0
12 Jan 2023
Reproducible scaling laws for contrastive language-image learning
Mehdi Cherti
Romain Beaumont
Ross Wightman
Mitchell Wortsman
Gabriel Ilharco
Cade Gordon
Christoph Schuhmann
Ludwig Schmidt
J. Jitsev
VLM
CLIP
107
794
0
14 Dec 2022
Unsupervised Domain Adaptation for Segmentation with Black-box Source Model
Xiaofeng Liu
Chaehwa Yoo
Fangxu Xing
C.-C. Jay Kuo
Xiaofeng Liu
Jonghye Woo
57
16
0
16 Aug 2022
Guided Diffusion Model for Adversarial Purification
Jinyi Wang
Zhaoyang Lyu
Dahua Lin
Bo Dai
Hongfei Fu
DiffM
224
86
0
30 May 2022
Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training
Cheng Xue
Lequan Yu
Pengfei Chen
Qi Dou
Pheng-Ann Heng
NoLa
37
52
0
10 May 2022
NoisyTune: A Little Noise Can Help You Finetune Pretrained Language Models Better
Chuhan Wu
Fangzhao Wu
Tao Qi
Yongfeng Huang
Xing Xie
32
60
0
24 Feb 2022
Tightening the Approximation Error of Adversarial Risk with Auto Loss Function Search
Pengfei Xia
Ziqiang Li
Bin Li
AAML
80
3
0
09 Nov 2021
An Empirical Study of Training End-to-End Vision-and-Language Transformers
Zi-Yi Dou
Yichong Xu
Zhe Gan
Jianfeng Wang
Shuohang Wang
...
Pengchuan Zhang
Lu Yuan
Nanyun Peng
Zicheng Liu
Michael Zeng
VLM
61
376
0
03 Nov 2021
Multi-modal Understanding and Generation for Medical Images and Text via Vision-Language Pre-Training
Jong Hak Moon
HyunGyung Lee
W. Shin
Young-Hak Kim
Edward Choi
MedIm
47
157
0
24 May 2021
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
786
29,167
0
26 Feb 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
349
4,918
0
24 Feb 2021
SLAKE: A Semantically-Labeled Knowledge-Enhanced Dataset for Medical Visual Question Answering
Bo Liu
Li-Ming Zhan
Li Xu
Lin Ma
Y. Yang
Xiao-Ming Wu
68
259
0
18 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
113
489
0
02 Feb 2021
To be Robust or to be Fair: Towards Fairness in Adversarial Training
Han Xu
Xiaorui Liu
Yaxin Li
Anil K. Jain
Jiliang Tang
41
180
0
13 Oct 2020
MedICaT: A Dataset of Medical Images, Captions, and Textual References
Sanjay Subramanian
Lucy Lu Wang
Sachin Mehta
Ben Bogin
Madeleine van Zuylen
Sravanthi Parasa
Sameer Singh
Matt Gardner
Hannaneh Hajishirzi
MedIm
37
70
0
12 Oct 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
59
439
0
24 Jun 2020
LXMERT: Learning Cross-Modality Encoder Representations from Transformers
Hao Hao Tan
Joey Tianyi Zhou
VLM
MLLM
227
2,474
0
20 Aug 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
62
377
0
01 Jun 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
119
1,242
0
29 Apr 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
118
2,541
0
24 Jan 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
110
2,583
0
21 Jan 2019
Hyperspectral Image Classification in the Presence of Noisy Labels
Junjun Jiang
Jiayi Ma
Zheng Wang
Chen Chen
Xianming Liu
NoLa
50
161
0
12 Sep 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
127
553
0
14 Feb 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
61
955
0
27 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
255
12,029
0
19 Jun 2017
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
Xiaosong Wang
Yifan Peng
Le Lu
Zhiyong Lu
M. Bagheri
Ronald M. Summers
LM&MA
135
2,521
0
05 May 2017
1