ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.01781
  4. Cited By
fVDB: A Deep-Learning Framework for Sparse, Large-Scale, and
  High-Performance Spatial Intelligence

fVDB: A Deep-Learning Framework for Sparse, Large-Scale, and High-Performance Spatial Intelligence

1 July 2024
Francis Williams
Jiahui Huang
Jonathan Swartz
G. Klár
Vijay Thakkar
Matthew Cong
Xuanchi Ren
Ruilong Li
Clement Fuji-Tsang
Sanja Fidler
Eftychios Sifakis
Ken Museth
ArXivPDFHTML

Papers citing "fVDB: A Deep-Learning Framework for Sparse, Large-Scale, and High-Performance Spatial Intelligence"

2 / 2 papers shown
Title
Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders
Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders
Rui Chen
Jianfeng Zhang
Yixun Liang
Guan Luo
Weiyu Li
Jiarui Liu
Xiu Li
Xiaoxiao Long
Jiashi Feng
P. Tan
88
12
0
23 Dec 2024
TorchSparse++: Efficient Training and Inference Framework for Sparse
  Convolution on GPUs
TorchSparse++: Efficient Training and Inference Framework for Sparse Convolution on GPUs
Haotian Tang
Shang Yang
Zhijian Liu
Ke Hong
Zhongming Yu
Xiuyu Li
Guohao Dai
Yu Wang
Song Han
57
21
0
25 Oct 2023
1