ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17536
  4. Cited By
MedMNIST-C: Comprehensive benchmark and improved classifier robustness
  by simulating realistic image corruptions
v1v2v3 (latest)

MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions

25 June 2024
Francesco Di Salvo
Sebastian Doerrich
Christian Ledig
    OOD
ArXiv (abs)PDFHTMLGithub (23★)

Papers citing "MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions"

14 / 14 papers shown
Title
On the Robustness of Medical Vision-Language Models: Are they Truly Generalizable?
On the Robustness of Medical Vision-Language Models: Are they Truly Generalizable?
Raza Imam
Rufael Marew
Mohammad Yaqub
AAMLVLM
61
0
0
21 May 2025
Out-of-Domain Robustness via Targeted Augmentations
Out-of-Domain Robustness via Targeted Augmentations
Irena Gao
Shiori Sagawa
Pang Wei Koh
Tatsunori Hashimoto
Percy Liang
OODDOOD
61
23
0
23 Feb 2023
A Systematic Review of Robustness in Deep Learning for Computer Vision:
  Mind the gap?
A Systematic Review of Robustness in Deep Learning for Computer Vision: Mind the gap?
Nathan G. Drenkow
Numair Sani
I. Shpitser
Mathias Unberath
46
79
0
01 Dec 2021
Vision Transformers are Robust Learners
Vision Transformers are Robust Learners
Sayak Paul
Pin-Yu Chen
ViT
67
312
0
17 May 2021
Evaluating the Robustness of Self-Supervised Learning in Medical Imaging
Evaluating the Robustness of Self-Supervised Learning in Medical Imaging
Fernando Navarro
Christopher Watanabe
Suprosanna Shit
Anjany Sekuboyina
J. Peeken
Stephanie E. Combs
Bjoern Menze
OOD
61
20
0
14 May 2021
MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for
  Medical Image Analysis
MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis
Jiancheng Yang
Rui Shi
Bingbing Ni
VLM
96
305
0
28 Oct 2020
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OODUQCV
128
1,308
0
05 Dec 2019
DR$\vert$GRADUATE: uncertainty-aware deep learning-based diabetic
  retinopathy grading in eye fundus images
DR∣\vert∣GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images
Teresa Araújo
Guilherme Aresta
Luís Mendonça
S. Penas
Carolina Maia
Â. Carneiro
A. Mendonça
A. Campilho
MedIm
379
111
0
25 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
258
3,505
0
30 Sep 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
624
4,802
0
13 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,455
0
28 Mar 2019
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
301
9,811
0
25 Oct 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
802
36,892
0
25 Aug 2016
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,529
0
04 Sep 2014
1