Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.15509
Cited By
Machine Learning Visualization Tool for Exploring Parameterized Hydrodynamics
20 June 2024
C. Jekel
D. Sterbentz
T. M. Stitt
P. Mocz
R. Rieben
D. A. White
Jonathan Belof
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine Learning Visualization Tool for Exploring Parameterized Hydrodynamics"
7 / 7 papers shown
Title
A Synergistic Framework Leveraging Autoencoders and Generative Adversarial Networks for the Synthesis of Computational Fluid Dynamics Results in Aerofoil Aerodynamics
Tanishk Nandal
Vaibhav Fulara
R. Singh
AI4CE
33
2
0
28 May 2023
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow
S. Wiewel
M. Becher
N. Thürey
AI4CE
95
276
0
27 Feb 2018
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
128
3,685
0
08 Jun 2017
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
271
14,023
0
19 Nov 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
1