ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.14910
  4. Cited By
Towards Dynamic Resource Allocation and Client Scheduling in
  Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning
  Approach

Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach

21 June 2024
Xiaojing Chen
Zhenyuan Li
Wei Ni
Xin Wang
Shunqing Zhang
Yanzan Sun
Shugong Xu
Qingqi Pei
ArXivPDFHTML

Papers citing "Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach"

8 / 8 papers shown
Title
Machine Learning Model Sizes and the Parameter Gap
Machine Learning Model Sizes and the Parameter Gap
Pablo Villalobos
J. Sevilla
T. Besiroglu
Lennart Heim
A. Ho
Marius Hobbhahn
ALM
ELM
AI4CE
47
59
0
05 Jul 2022
Context-Aware Online Client Selection for Hierarchical Federated
  Learning
Context-Aware Online Client Selection for Hierarchical Federated Learning
Zhe Qu
Rui Duan
Lixing Chen
Jie Xu
Zhuo Lu
Yao-Hong Liu
53
61
0
02 Dec 2021
Communication-Efficient Hierarchical Federated Learning for IoT
  Heterogeneous Systems with Imbalanced Data
Communication-Efficient Hierarchical Federated Learning for IoT Heterogeneous Systems with Imbalanced Data
A. Abdellatif
N. Mhaisen
Amr M. Mohamed
A. Erbad
Mohsen Guizani
Z. Dawy
W. Nasreddine
FedML
73
94
0
14 Jul 2021
Distributed Machine Learning for Wireless Communication Networks:
  Techniques, Architectures, and Applications
Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications
Shuyan Hu
Xiaojing Chen
Wei Ni
Ekram Hossain
Xin Wang
AI4CE
67
114
0
02 Dec 2020
Federated Learning over Wireless Networks: Convergence Analysis and
  Resource Allocation
Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation
Canh T. Dinh
N. H. Tran
Minh N. H. Nguyen
Choong Seon Hong
Wei Bao
Albert Y. Zomaya
Vincent Gramoli
FedML
91
333
0
29 Oct 2019
A Joint Learning and Communications Framework for Federated Learning
  over Wireless Networks
A Joint Learning and Communications Framework for Federated Learning over Wireless Networks
Mingzhe Chen
Zhaohui Yang
Walid Saad
Changchuan Yin
H. Vincent Poor
Shuguang Cui
FedML
61
1,181
0
17 Sep 2019
Client-Edge-Cloud Hierarchical Federated Learning
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
53
736
0
16 May 2019
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
267
4,620
0
18 Oct 2016
1