Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.14910
Cited By
Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach
21 June 2024
Xiaojing Chen
Zhenyuan Li
Wei Ni
Xin Wang
Shunqing Zhang
Yanzan Sun
Shugong Xu
Qingqi Pei
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach"
8 / 8 papers shown
Title
Machine Learning Model Sizes and the Parameter Gap
Pablo Villalobos
J. Sevilla
T. Besiroglu
Lennart Heim
A. Ho
Marius Hobbhahn
ALM
ELM
AI4CE
47
59
0
05 Jul 2022
Context-Aware Online Client Selection for Hierarchical Federated Learning
Zhe Qu
Rui Duan
Lixing Chen
Jie Xu
Zhuo Lu
Yao-Hong Liu
53
61
0
02 Dec 2021
Communication-Efficient Hierarchical Federated Learning for IoT Heterogeneous Systems with Imbalanced Data
A. Abdellatif
N. Mhaisen
Amr M. Mohamed
A. Erbad
Mohsen Guizani
Z. Dawy
W. Nasreddine
FedML
73
94
0
14 Jul 2021
Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications
Shuyan Hu
Xiaojing Chen
Wei Ni
Ekram Hossain
Xin Wang
AI4CE
67
114
0
02 Dec 2020
Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation
Canh T. Dinh
N. H. Tran
Minh N. H. Nguyen
Choong Seon Hong
Wei Bao
Albert Y. Zomaya
Vincent Gramoli
FedML
91
333
0
29 Oct 2019
A Joint Learning and Communications Framework for Federated Learning over Wireless Networks
Mingzhe Chen
Zhaohui Yang
Walid Saad
Changchuan Yin
H. Vincent Poor
Shuguang Cui
FedML
61
1,181
0
17 Sep 2019
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
53
736
0
16 May 2019
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
267
4,620
0
18 Oct 2016
1