ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.14324
  4. Cited By
Revealing the Learning Process in Reinforcement Learning Agents Through Attention-Oriented Metrics

Revealing the Learning Process in Reinforcement Learning Agents Through Attention-Oriented Metrics

20 June 2024
Charlotte Beylier
Simon M. Hofmann
Nico Scherf
ArXivPDFHTML

Papers citing "Revealing the Learning Process in Reinforcement Learning Agents Through Attention-Oriented Metrics"

24 / 24 papers shown
Title
A Dual-Stream Neural Network Explains the Functional Segregation of
  Dorsal and Ventral Visual Pathways in Human Brains
A Dual-Stream Neural Network Explains the Functional Segregation of Dorsal and Ventral Visual Pathways in Human Brains
Minkyu Choi
Kuan Han
Xiaokai Wang
Yizhen Zhang
Zhongming Liu
64
14
0
20 Oct 2023
Machine versus Human Attention in Deep Reinforcement Learning Tasks
Machine versus Human Attention in Deep Reinforcement Learning Tasks
Sihang Guo
Ruohan Zhang
Bo Liu
Yifeng Zhu
M. Hayhoe
D. Ballard
Peter Stone
OffRL
66
27
0
29 Oct 2020
Convolutional Neural Networks as a Model of the Visual System: Past,
  Present, and Future
Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future
Grace W. Lindsay
MedIm
88
432
0
20 Jan 2020
Explain Your Move: Understanding Agent Actions Using Specific and
  Relevant Feature Attribution
Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution
Nikaash Puri
Sukriti Verma
Piyush B. Gupta
Dhruv Kayastha
Shripad Deshmukh
Balaji Krishnamurthy
Sameer Singh
FAtt
AAML
41
77
0
23 Dec 2019
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps
  for Deep Reinforcement Learning
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement Learning
Akanksha Atrey
Kaleigh Clary
David D. Jensen
FAtt
LRM
61
91
0
09 Dec 2019
Conservative Q-Improvement: Reinforcement Learning for an Interpretable
  Decision-Tree Policy
Conservative Q-Improvement: Reinforcement Learning for an Interpretable Decision-Tree Policy
Aaron M. Roth
Nicholay Topin
Pooyan Jamshidi
Manuela Veloso
OffRL
54
48
0
02 Jul 2019
Explainable Reinforcement Learning Through a Causal Lens
Explainable Reinforcement Learning Through a Causal Lens
Prashan Madumal
Tim Miller
L. Sonenberg
F. Vetere
CML
98
361
0
27 May 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
100
1,015
0
26 Feb 2019
Visual Rationalizations in Deep Reinforcement Learning for Atari Games
Visual Rationalizations in Deep Reinforcement Learning for Atari Games
L. Weitkamp
Elise van der Pol
Zeynep Akata
48
27
0
01 Feb 2019
Quantifying Generalization in Reinforcement Learning
Quantifying Generalization in Reinforcement Learning
K. Cobbe
Oleg Klimov
Christopher Hesse
Taehoon Kim
John Schulman
OffRL
102
671
0
06 Dec 2018
Contrastive Explanations for Reinforcement Learning in terms of Expected
  Consequences
Contrastive Explanations for Reinforcement Learning in terms of Expected Consequences
J. V. D. Waa
J. Diggelen
K. Bosch
Mark Antonius Neerincx
OffRL
51
108
0
23 Jul 2018
Toward Interpretable Deep Reinforcement Learning with Linear Model
  U-Trees
Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees
Guiliang Liu
Oliver Schulte
Wang Zhu
Qingcan Li
AI4CE
42
135
0
16 Jul 2018
Programmatically Interpretable Reinforcement Learning
Programmatically Interpretable Reinforcement Learning
Abhinav Verma
V. Murali
Rishabh Singh
Pushmeet Kohli
Swarat Chaudhuri
114
353
0
06 Apr 2018
Hierarchical and Interpretable Skill Acquisition in Multi-task
  Reinforcement Learning
Hierarchical and Interpretable Skill Acquisition in Multi-task Reinforcement Learning
Tianmin Shu
Caiming Xiong
R. Socher
OffRL
130
140
0
20 Dec 2017
Visualizing and Understanding Atari Agents
Visualizing and Understanding Atari Agents
S. Greydanus
Anurag Koul
Jonathan Dodge
Alan Fern
FAtt
100
347
0
31 Oct 2017
Particle Swarm Optimization for Generating Interpretable Fuzzy
  Reinforcement Learning Policies
Particle Swarm Optimization for Generating Interpretable Fuzzy Reinforcement Learning Policies
D. Hein
A. Hentschel
Thomas Runkler
Steffen Udluft
OffRL
55
80
0
19 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,023
0
07 Oct 2016
Graying the black box: Understanding DQNs
Graying the black box: Understanding DQNs
Tom Zahavy
Nir Ben-Zrihem
Shie Mannor
84
263
0
08 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
197
8,859
0
04 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,319
0
14 Dec 2015
Explaining NonLinear Classification Decisions with Deep Taylor
  Decomposition
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
737
0
08 Dec 2015
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
127
12,231
0
19 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
1