Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.13733
Cited By
You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling
19 June 2024
Nabeel Seedat
Nicolas Huynh
F. Imrie
Mihaela van der Schaar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling"
7 / 7 papers shown
Title
Dissecting Sample Hardness: A Fine-Grained Analysis of Hardness Characterization Methods for Data-Centric AI
Nabeel Seedat
F. Imrie
M. Schaar
21
8
0
07 Mar 2024
FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning
Yidong Wang
Hao Chen
Qiang Heng
Wenxin Hou
Yue Fan
...
Marios Savvides
T. Shinozaki
Bhiksha Raj
Bernt Schiele
Xing Xie
185
258
0
15 May 2022
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
234
862
0
15 Oct 2021
Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed Self-Training
Kai Sheng Tai
Peter Bailis
Gregory Valiant
OT
45
43
0
17 Feb 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
229
509
0
15 Jan 2021
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
208
107
0
26 Aug 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1