ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.13695
  4. Cited By
Multilingual De-Duplication Strategies: Applying scalable similarity
  search with monolingual & multilingual embedding models

Multilingual De-Duplication Strategies: Applying scalable similarity search with monolingual & multilingual embedding models

19 June 2024
Stefan Pasch
Dimitirios Petridis
Jannic Cutura
ArXivPDFHTML

Papers citing "Multilingual De-Duplication Strategies: Applying scalable similarity search with monolingual & multilingual embedding models"

2 / 2 papers shown
Title
Deduplicating Training Data Makes Language Models Better
Deduplicating Training Data Makes Language Models Better
Katherine Lee
Daphne Ippolito
A. Nystrom
Chiyuan Zhang
Douglas Eck
Chris Callison-Burch
Nicholas Carlini
SyDa
242
595
0
14 Jul 2021
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for
  Pairwise Sentence Scoring Tasks
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks
Nandan Thakur
Nils Reimers
Johannes Daxenberger
Iryna Gurevych
208
243
0
16 Oct 2020
1