ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.13695
21
0

Multilingual De-Duplication Strategies: Applying scalable similarity search with monolingual & multilingual embedding models

19 June 2024
Stefan Pasch
Dimitirios Petridis
Jannic Cutura
ArXivPDFHTML
Abstract

This paper addresses the deduplication of multilingual textual data using advanced NLP tools. We compare a two-step method involving translation to English followed by embedding with mpnet, and a multilingual embedding model (distiluse). The two-step approach achieved a higher F1 score (82% vs. 60%), particularly with less widely used languages, which can be increased up to 89% by leveraging expert rules based on domain knowledge. We also highlight limitations related to token length constraints and computational efficiency. Our methodology suggests improvements for future multilingual deduplication tasks.

View on arXiv
Comments on this paper