ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.12845
  4. Cited By
Interpretable Preferences via Multi-Objective Reward Modeling and
  Mixture-of-Experts

Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts

18 June 2024
Haoxiang Wang
Wei Xiong
Tengyang Xie
Han Zhao
Tong Zhang
ArXivPDFHTML

Papers citing "Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts"

49 / 49 papers shown
Title
On the Robustness of Reward Models for Language Model Alignment
On the Robustness of Reward Models for Language Model Alignment
Jiwoo Hong
Noah Lee
Eunki Kim
Guijin Son
Woojin Chung
Aman Gupta
Shao Tang
James Thorne
29
0
0
12 May 2025
Sandcastles in the Storm: Revisiting the (Im)possibility of Strong Watermarking
Sandcastles in the Storm: Revisiting the (Im)possibility of Strong Watermarking
Fabrice Harel-Canada
Boran Erol
Connor Choi
J. Liu
Gary Jiarui Song
Nanyun Peng
Amit Sahai
AAML
26
0
0
11 May 2025
Sailing AI by the Stars: A Survey of Learning from Rewards in Post-Training and Test-Time Scaling of Large Language Models
Sailing AI by the Stars: A Survey of Learning from Rewards in Post-Training and Test-Time Scaling of Large Language Models
Xiaobao Wu
LRM
72
1
0
05 May 2025
RM-R1: Reward Modeling as Reasoning
RM-R1: Reward Modeling as Reasoning
Xiusi Chen
Gaotang Li
Zehua Wang
Bowen Jin
Cheng Qian
...
Y. Zhang
D. Zhang
Tong Zhang
Hanghang Tong
Heng Ji
ReLM
OffRL
LRM
165
1
0
05 May 2025
Improving Model Alignment Through Collective Intelligence of Open-Source LLMS
Improving Model Alignment Through Collective Intelligence of Open-Source LLMS
Junlin Wang
Roy Xie
Shang Zhu
Jue Wang
Ben Athiwaratkun
Bhuwan Dhingra
Shuaiwen Leon Song
Ce Zhang
James Zou
ALM
31
0
0
05 May 2025
Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Junshu Pan
Wei Shen
Shulin Huang
Qiji Zhou
Yue Zhang
71
0
0
22 Apr 2025
Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment
Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment
Xiaotian Zhang
Ruizhe Chen
Yang Feng
Zuozhu Liu
40
0
0
17 Apr 2025
FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
Longguang Zhong
Fanqi Wan
Ziyi Yang
Guosheng Liang
Tianyuan Shi
Xiaojun Quan
MoMe
57
0
0
09 Apr 2025
Inference-Time Scaling for Generalist Reward Modeling
Inference-Time Scaling for Generalist Reward Modeling
Zijun Liu
P. Wang
Ran Xu
Shirong Ma
Chong Ruan
Peng Li
Yang Liu
Y. Wu
OffRL
LRM
46
11
0
03 Apr 2025
Aligning Multimodal LLM with Human Preference: A Survey
Aligning Multimodal LLM with Human Preference: A Survey
Tao Yu
Yuyao Zhang
Chaoyou Fu
Junkang Wu
Jinda Lu
...
Qingsong Wen
Z. Zhang
Yan Huang
Liang Wang
Tieniu Tan
164
2
0
18 Mar 2025
PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing
PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing
Cheng Deng
Luoyang Sun
Jiwen Jiang
Yongcheng Zeng
Xinjian Wu
...
Haoyang Li
Lei Chen
Lionel M. Ni
Hongzhi Zhang
Jun Wang
168
0
0
15 Mar 2025
Towards Large Language Models that Benefit for All: Benchmarking Group Fairness in Reward Models
Kefan Song
Jin Yao
Runnan Jiang
Rohan Chandra
Shangtong Zhang
ALM
46
0
0
10 Mar 2025
UC-MOA: Utility-Conditioned Multi-Objective Alignment for Distributional Pareto-Optimality
UC-MOA: Utility-Conditioned Multi-Objective Alignment for Distributional Pareto-Optimality
Zelei Cheng
Xin-Qiang Cai
Yuting Tang
Pushi Zhang
Boming Yang
Xinyu Xing
Xinyu Xing
46
0
0
10 Mar 2025
DiffPO: Diffusion-styled Preference Optimization for Efficient Inference-Time Alignment of Large Language Models
Ruizhe Chen
Wenhao Chai
Zhifei Yang
Xiaotian Zhang
Qiufeng Wang
Tony Q. S. Quek
Soujanya Poria
Zuozhu Liu
50
0
0
06 Mar 2025
PEO: Improving Bi-Factorial Preference Alignment with Post-Training Policy Extrapolation
Yuxuan Liu
45
0
0
03 Mar 2025
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
Zhaoyi Zhou
Yuda Song
Andrea Zanette
ALM
73
0
0
14 Feb 2025
MJ-VIDEO: Fine-Grained Benchmarking and Rewarding Video Preferences in Video Generation
MJ-VIDEO: Fine-Grained Benchmarking and Rewarding Video Preferences in Video Generation
Haibo Tong
Zhaoyang Wang
Zhengzhang Chen
Haonian Ji
Shi Qiu
...
Peng Xia
Mingyu Ding
Rafael Rafailov
Chelsea Finn
Huaxiu Yao
EGVM
VGen
102
2
0
03 Feb 2025
Diverse Preference Optimization
Diverse Preference Optimization
Jack Lanchantin
Angelica Chen
S. Dhuliawala
Ping Yu
Jason Weston
Sainbayar Sukhbaatar
Ilia Kulikov
93
4
0
30 Jan 2025
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Bradley Brown
Jordan Juravsky
Ryan Ehrlich
Ronald Clark
Quoc V. Le
Christopher Ré
Azalia Mirhoseini
ALM
LRM
87
220
0
03 Jan 2025
Reinforcement Learning Enhanced LLMs: A Survey
Reinforcement Learning Enhanced LLMs: A Survey
Shuhe Wang
Shengyu Zhang
Jingyang Zhang
Runyi Hu
Xiaoya Li
Tianwei Zhang
Jiwei Li
Fei Wu
G. Wang
Eduard H. Hovy
OffRL
134
7
0
05 Dec 2024
Self-Generated Critiques Boost Reward Modeling for Language Models
Self-Generated Critiques Boost Reward Modeling for Language Models
Yue Yu
Zhengxing Chen
Aston Zhang
L Tan
Chenguang Zhu
...
Suchin Gururangan
Chao-Yue Zhang
Melanie Kambadur
Dhruv Mahajan
Rui Hou
LRM
ALM
96
16
0
25 Nov 2024
Interpreting Language Reward Models via Contrastive Explanations
Interpreting Language Reward Models via Contrastive Explanations
Junqi Jiang
Tom Bewley
Saumitra Mishra
Freddy Lecue
Manuela Veloso
74
0
0
25 Nov 2024
Stronger Models are NOT Stronger Teachers for Instruction Tuning
Stronger Models are NOT Stronger Teachers for Instruction Tuning
Zhangchen Xu
Fengqing Jiang
Luyao Niu
Bill Yuchen Lin
Radha Poovendran
ALM
53
5
0
11 Nov 2024
Sharp Analysis for KL-Regularized Contextual Bandits and RLHF
Sharp Analysis for KL-Regularized Contextual Bandits and RLHF
Heyang Zhao
Chenlu Ye
Quanquan Gu
Tong Zhang
OffRL
57
3
0
07 Nov 2024
MDCure: A Scalable Pipeline for Multi-Document Instruction-Following
MDCure: A Scalable Pipeline for Multi-Document Instruction-Following
Gabrielle Kaili-May Liu
Bowen Shi
Avi Caciularu
Idan Szpektor
Arman Cohan
72
4
0
30 Oct 2024
Cross-lingual Transfer of Reward Models in Multilingual Alignment
Cross-lingual Transfer of Reward Models in Multilingual Alignment
Jiwoo Hong
Noah Lee
Rodrigo Martínez-Castaño
César Rodríguez
James Thorne
48
4
0
23 Oct 2024
Taming Overconfidence in LLMs: Reward Calibration in RLHF
Taming Overconfidence in LLMs: Reward Calibration in RLHF
Jixuan Leng
Chengsong Huang
Banghua Zhu
Jiaxin Huang
34
7
0
13 Oct 2024
RMB: Comprehensively Benchmarking Reward Models in LLM Alignment
RMB: Comprehensively Benchmarking Reward Models in LLM Alignment
Enyu Zhou
Guodong Zheng
Binghui Wang
Zhiheng Xi
Shihan Dou
...
Yurong Mou
Rui Zheng
Tao Gui
Qi Zhang
Xuanjing Huang
ALM
59
18
0
13 Oct 2024
Reward-Augmented Data Enhances Direct Preference Alignment of LLMs
Reward-Augmented Data Enhances Direct Preference Alignment of LLMs
Shenao Zhang
Zhihan Liu
Boyi Liu
Yuhang Zhang
Yingxiang Yang
Y. Liu
Liyu Chen
Tao Sun
Ziyi Wang
98
3
0
10 Oct 2024
ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time
ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time
Yi Ding
Bolian Li
Ruqi Zhang
MLLM
72
6
0
09 Oct 2024
Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Zhaolin Gao
Wenhao Zhan
Jonathan D. Chang
Gokul Swamy
Kianté Brantley
Jason D. Lee
Wen Sun
OffRL
58
3
0
06 Oct 2024
RainbowPO: A Unified Framework for Combining Improvements in Preference Optimization
RainbowPO: A Unified Framework for Combining Improvements in Preference Optimization
Hanyang Zhao
Genta Indra Winata
Anirban Das
Shi-Xiong Zhang
D. Yao
Wenpin Tang
Sambit Sahu
54
5
0
05 Oct 2024
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and
  Generation
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation
Jonathan Cook
Tim Rocktaschel
Jakob Foerster
Dennis Aumiller
Alex Wang
ALM
34
10
0
04 Oct 2024
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
Genta Indra Winata
David Anugraha
Lucky Susanto
Garry Kuwanto
Derry Wijaya
37
7
0
03 Oct 2024
HelpSteer2-Preference: Complementing Ratings with Preferences
HelpSteer2-Preference: Complementing Ratings with Preferences
Zhilin Wang
Alexander Bukharin
Olivier Delalleau
Daniel Egert
Gerald Shen
Jiaqi Zeng
Oleksii Kuchaiev
Yi Dong
ALM
44
41
0
02 Oct 2024
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Xingzhou Lou
Dong Yan
Wei Shen
Yuzi Yan
Jian Xie
Junge Zhang
47
22
0
01 Oct 2024
RRM: Robust Reward Model Training Mitigates Reward Hacking
RRM: Robust Reward Model Training Mitigates Reward Hacking
Tianqi Liu
Wei Xiong
Jie Jessie Ren
Lichang Chen
Junru Wu
...
Yuan Liu
Bilal Piot
Abe Ittycheriah
Aviral Kumar
Mohammad Saleh
AAML
56
13
0
20 Sep 2024
Aligning Language Models Using Follow-up Likelihood as Reward Signal
Aligning Language Models Using Follow-up Likelihood as Reward Signal
Chen Zhang
Dading Chong
Feng Jiang
Chengguang Tang
Anningzhe Gao
Guohua Tang
Haizhou Li
ALM
33
2
0
20 Sep 2024
From Lists to Emojis: How Format Bias Affects Model Alignment
From Lists to Emojis: How Format Bias Affects Model Alignment
Xuanchang Zhang
Wei Xiong
Lichang Chen
Dinesh Manocha
Heng Huang
Tong Zhang
ALM
35
11
0
18 Sep 2024
Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models
Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models
Wenxuan Zhang
Philip H. S. Torr
Mohamed Elhoseiny
Adel Bibi
83
9
0
27 Aug 2024
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs
  with Nothing
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
Zhangchen Xu
Fengqing Jiang
Luyao Niu
Yuntian Deng
Radha Poovendran
Yejin Choi
Bill Yuchen Lin
SyDa
34
120
0
12 Jun 2024
AdvisorQA: Towards Helpful and Harmless Advice-seeking Question Answering with Collective Intelligence
AdvisorQA: Towards Helpful and Harmless Advice-seeking Question Answering with Collective Intelligence
Minbeom Kim
Hwanhee Lee
Joonsuk Park
Hwaran Lee
Kyomin Jung
32
1
0
18 Apr 2024
Direct Nash Optimization: Teaching Language Models to Self-Improve with
  General Preferences
Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
Corby Rosset
Ching-An Cheng
Arindam Mitra
Michael Santacroce
Ahmed Hassan Awadallah
Tengyang Xie
152
114
0
04 Apr 2024
RewardBench: Evaluating Reward Models for Language Modeling
RewardBench: Evaluating Reward Models for Language Modeling
Nathan Lambert
Valentina Pyatkin
Jacob Morrison
Lester James Validad Miranda
Bill Yuchen Lin
...
Sachin Kumar
Tom Zick
Yejin Choi
Noah A. Smith
Hanna Hajishirzi
ALM
82
214
0
20 Mar 2024
CodeUltraFeedback: An LLM-as-a-Judge Dataset for Aligning Large Language
  Models to Coding Preferences
CodeUltraFeedback: An LLM-as-a-Judge Dataset for Aligning Large Language Models to Coding Preferences
Martin Weyssow
Aton Kamanda
H. Sahraoui
ALM
64
32
0
14 Mar 2024
ODIN: Disentangled Reward Mitigates Hacking in RLHF
ODIN: Disentangled Reward Mitigates Hacking in RLHF
Lichang Chen
Chen Zhu
Davit Soselia
Jiuhai Chen
Dinesh Manocha
Tom Goldstein
Heng-Chiao Huang
M. Shoeybi
Bryan Catanzaro
AAML
47
51
0
11 Feb 2024
Defining and Characterizing Reward Hacking
Defining and Characterizing Reward Hacking
Joar Skalse
Nikolaus H. R. Howe
Dmitrii Krasheninnikov
David M. Krueger
59
55
0
27 Sep 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
313
11,953
0
04 Mar 2022
Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information
Understanding Dataset Difficulty with V\mathcal{V}V-Usable Information
Kawin Ethayarajh
Yejin Choi
Swabha Swayamdipta
167
157
0
16 Oct 2021
1