ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.09069
  4. Cited By
On the Robustness of Global Feature Effect Explanations

On the Robustness of Global Feature Effect Explanations

13 June 2024
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
ArXivPDFHTML

Papers citing "On the Robustness of Global Feature Effect Explanations"

7 / 7 papers shown
Title
Efficient and Accurate Explanation Estimation with Distribution Compression
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
70
4
0
26 Jun 2024
"Is your explanation stable?": A Robustness Evaluation Framework for
  Feature Attribution
"Is your explanation stable?": A Robustness Evaluation Framework for Feature Attribution
Yuyou Gan
Yuhao Mao
Xuhong Zhang
S. Ji
Yuwen Pu
Meng Han
Jianwei Yin
Ting Wang
FAtt
AAML
17
15
0
05 Sep 2022
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
60
224
0
25 Feb 2021
Robust and Stable Black Box Explanations
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
43
84
0
12 Nov 2020
Lipschitz regularity of deep neural networks: analysis and efficient
  estimation
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
58
523
0
28 May 2018
A Simple and Effective Model-Based Variable Importance Measure
A Simple and Effective Model-Based Variable Importance Measure
Brandon M. Greenwell
Bradley C. Boehmke
Andrew J. McCarthy
FAtt
TDI
24
227
0
12 May 2018
Visualizing the Feature Importance for Black Box Models
Visualizing the Feature Importance for Black Box Models
Giuseppe Casalicchio
Christoph Molnar
B. Bischl
FAtt
31
182
0
18 Apr 2018
1